找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations with Involutions; Alberto Cabada,F. Adrián F. Tojo Book 2015 Atlantis Press and the author(s) 2015 Differential Equ

[復制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 10:56:17 | 只看該作者
12#
發(fā)表于 2025-3-23 15:45:39 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9itrary differentiable involutions, to the one studied in Chap.?.. As we will see, we will do this in three steps. First we add a term depending on .(.) which does not change much with respect to the previous situations. Then, moving from the reflection to a general involution is fairly simple using
13#
發(fā)表于 2025-3-23 18:04:06 | 只看該作者
14#
發(fā)表于 2025-3-24 00:28:55 | 只看該作者
https://doi.org/10.1007/978-3-642-49762-9This chapter is devoted to those results related to differential equations with reflection not directly associated with Green’s functions. The proofs of the results can be found in the bibliography cited for each case. We will not enter into detail with these results, but we summarize their nature for the convenience of the reader.
15#
發(fā)表于 2025-3-24 03:30:16 | 只看該作者
https://doi.org/10.1007/978-3-642-22925-1In this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
16#
發(fā)表于 2025-3-24 07:50:41 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:32 | 只看該作者
A Cone Approximation to a Problem with ReflectionIn this chapter we continue this study and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form .where the kernel . is allowed to be not of constant sign.
18#
發(fā)表于 2025-3-24 15:23:18 | 只看該作者
19#
發(fā)表于 2025-3-24 20:20:43 | 只看該作者
20#
發(fā)表于 2025-3-25 03:04:48 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 16:22
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巴彦淖尔市| 怀来县| 通榆县| 都江堰市| 新化县| 固镇县| 凤凰县| 陇南市| 明水县| 怀集县| 区。| 宁强县| 宜春市| 通海县| 依安县| 萨迦县| 台北市| 淮北市| 福建省| 偃师市| 河源市| 广平县| 饶河县| 阜宁县| 周宁县| 安化县| 张家界市| 榆林市| 元阳县| 江达县| 延川县| 上栗县| 嘉善县| 分宜县| 红桥区| 新竹市| 织金县| 拉孜县| 郯城县| 固镇县| 敦煌市|