找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Equations and Numerical Analysis; Tiruchirappalli, Ind Valarmathi Sigamani,John J. H. Miller,Franklin Vic Conference proceedin

[復制鏈接]
樓主: 閘門
11#
發(fā)表于 2025-3-23 11:59:09 | 只看該作者
Convergence of the Crank-Nicolson Method for a Singularly Perturbed Parabolic Reaction-Diffusion Sysin piecewise uniform mesh for space is constructed. It is proved that in the maximum norm, the numerical approximations obtained with this method are second order convergent in time and essentially second order convergent in space.
12#
發(fā)表于 2025-3-23 17:10:42 | 只看該作者
13#
發(fā)表于 2025-3-23 18:45:02 | 只看該作者
A Parameter-Uniform First Order Convergent Numerical Method for a Semi-linear System of Singularly Pomposed of a classical finite difference operator applied on a piecewise uniform Shishkin mesh is suggested to solve the problem. The method is proved to be first order convergent in the maximum norm uniformly in the perturbation parameters. Numerical computation is described, which supports the theoretical results.
14#
發(fā)表于 2025-3-24 00:20:32 | 只看該作者
Particle Therapy for Head and Neck Sarcomas,he introduction of a transformation of the problem, which facilitates the necessary alignment of the mesh to the trajectory of the interior layer. Here we review a selection of published results on such problems to illustrate the variety of ways that interior layers can appear.
15#
發(fā)表于 2025-3-24 05:02:41 | 只看該作者
Adiabatic Theory of Charged Particle Motionewise uniform mesh is suggested to approximate the solution. The method is proved to be first order convergent uniformly with respect to the singular perturbation parameter. Numerical illustrations are also presented.
16#
發(fā)表于 2025-3-24 10:08:00 | 只看該作者
17#
發(fā)表于 2025-3-24 10:42:09 | 只看該作者
2194-1009 rs, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.978-81-322-3862-1978-81-322-3598-9Series ISSN 2194-1009 Series E-ISSN 2194-1017
18#
發(fā)表于 2025-3-24 15:42:32 | 只看該作者
19#
發(fā)表于 2025-3-24 21:29:44 | 只看該作者
Elementary Tutorial on Numerical Methods for Singular Perturbation Problems backward Euler finite difference method for this problem. We then discuss continuous and discrete maximum principles for the associated continuous and discrete operators and we conclude the section by defining what is meant by a parameter-uniform numerical method. In the second section we introduce
20#
發(fā)表于 2025-3-25 01:17:08 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
湖南省| 商都县| 福贡县| 铁岭市| 隆安县| 淳安县| 比如县| 麻栗坡县| 九寨沟县| 三台县| 东乌珠穆沁旗| 昌乐县| 永宁县| 类乌齐县| 司法| 无极县| 汝州市| 桐梓县| 乐陵市| 灵台县| 大足县| 水富县| 布尔津县| 通榆县| 大名县| 彭阳县| 剑川县| 定西市| 贡嘎县| 米脂县| 南溪县| 雷州市| 乐昌市| 兴文县| 中阳县| 安顺市| 西和县| 苏尼特左旗| 乐东| 仙游县| 布尔津县|