找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differential Analysis on Complex Manifolds; Raymond O. Wells Textbook 2008Latest edition Springer-Verlag New York 2008 Analysis.Differenzi

[復(fù)制鏈接]
樓主: Asphyxia
11#
發(fā)表于 2025-3-23 12:04:15 | 只看該作者
Textbook 2008Latest edition detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Subsequent chapters then develop such topics as Hermitian exterior algebra and the Hodge *-operator, harmonic theory on compact
12#
發(fā)表于 2025-3-23 16:23:10 | 只看該作者
13#
發(fā)表于 2025-3-23 19:03:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:54:52 | 只看該作者
15#
發(fā)表于 2025-3-24 06:10:28 | 只看該作者
,Kodaira’s Projective Embedding Theorem,rem asserts that projective algebraic manifolds are indeed ., i.e., defined by the zeros of homogeneous polynomials. Thus the combination of these two theorems allows one to reduce problems of analysis to ones of algebra (cf. Serre‘s famous paper [2] in which this program of comparison is carried out in great detail).
16#
發(fā)表于 2025-3-24 10:18:37 | 只看該作者
0072-5285 ocks of many mathematical developments over the past 30 year.In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles
17#
發(fā)表于 2025-3-24 13:52:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:54:25 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:44 | 只看該作者
Differential Geometry,undles. In Sec. 1 we shall give the basic definitions of the Hermitian analogues of the classical concepts of (Riemannian) metric, connection, and curvature. This is carried out in the context of differentiable C-vector bundles over a differentiable manifold .. More specific formulas are obtained in
20#
發(fā)表于 2025-3-25 00:30:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓台县| 嘉峪关市| 周口市| 来安县| 丹阳市| 太原市| 乐东| 铜山县| 湟源县| 科技| 大城县| 扎鲁特旗| 景泰县| 中西区| 虞城县| 阳春市| 高邮市| 甘孜| 西城区| 博爱县| 桂阳县| 贵定县| 海城市| 商河县| 兴仁县| 岳池县| 精河县| 三河市| 金塔县| 隆德县| 敦化市| 盱眙县| 三明市| 琼结县| 武冈市| 甘泉县| 康乐县| 富顺县| 松原市| 峡江县| 连云港市|