找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable and Complex Dynamics of Several Variables; Pei-Chu Hu,Chung-Chun Yang Book 1999 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 12:08:17 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/d/image/278637.jpg
12#
發(fā)表于 2025-3-23 15:05:25 | 只看該作者
13#
發(fā)表于 2025-3-23 19:41:31 | 只看該作者
14#
發(fā)表于 2025-3-24 02:05:46 | 只看該作者
Alyson Campbell,Stephen FarrierIn this chapter, we will discuss some topics which are related to the Fatou-Julia type theory, say, Hamiltonian systems, linearization, ..-normality, and so on.
15#
發(fā)表于 2025-3-24 04:46:08 | 只看該作者
Intermediate Statistics and Probability,In this chapter, we will introduce the Fatou-Julia theory on ?. obtained by Fornaess and Sibony. Here we mainly introduce the theory on holomorphic mappings. For the case of meromorphic mappings, see their paper [85]. We also prove the Ueda’s theorem related to Conjecture 5.2, and simply introduce the Newton’s method.
16#
發(fā)表于 2025-3-24 09:04:34 | 只看該作者
17#
發(fā)表于 2025-3-24 13:59:18 | 只看該作者
https://doi.org/10.1057/9781137447739In this appendix, we will introduce some notations, terminologies and basic facts used in dynamics.
18#
發(fā)表于 2025-3-24 15:09:09 | 只看該作者
19#
發(fā)表于 2025-3-24 21:53:54 | 只看該作者
Ergodic theorems and invariant sets,In this chapter, we introduce basic notations and theorems in ergodic theory and define some invariant sets which are closely related to ergodic theorems. Also we will establish relations between these invariant sets and some quantities similar to entropies.
20#
發(fā)表于 2025-3-25 00:08:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
呼图壁县| 石林| 神木县| 寻乌县| 应城市| 建阳市| 尼勒克县| 民丰县| 台江县| 安庆市| 曲周县| 思茅市| 武隆县| 普陀区| 宝山区| 祁阳县| 吉安市| 崇信县| 寻乌县| 沧源| 临桂县| 延寿县| 巨野县| 绍兴市| 施甸县| 和龙市| 绥江县| 泾川县| 伊通| 万全县| 肥西县| 南川市| 淮滨县| 北流市| 集安市| 大安市| 东乌| 广昌县| 环江| 科技| 哈密市|