找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Differentiable Manifolds; Lawrence Conlon Textbook 2001Latest edition Birkh?user Boston 2001 Differential Geometry.Global Calculus.Topolog

[復(fù)制鏈接]
樓主: 五個(gè)
21#
發(fā)表于 2025-3-25 06:56:03 | 只看該作者
22#
發(fā)表于 2025-3-25 07:52:58 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:05 | 只看該作者
24#
發(fā)表于 2025-3-25 16:30:04 | 只看該作者
Topological Manifolds,This chapter pertains to the global theory of manifolds. See also [., Chapter I] and [., Chapter 1].
25#
發(fā)表于 2025-3-25 21:48:30 | 只看該作者
26#
發(fā)表于 2025-3-26 00:45:29 | 只看該作者
The Global Theory of Smooth Functions,Our present goal is to extend the theory of smooth functions, developed on open subsets of ?. in Chapter 2, to arbitrary differentiable manifolds. Geometric topology becomes an essential feature.
27#
發(fā)表于 2025-3-26 04:33:21 | 只看該作者
Lie Groups and Lie Algebras,Lie groups and their Lie algebras play a central role in geometry, topology, and analysis. Here we can only give a brief introduction to this fascinating topic.
28#
發(fā)表于 2025-3-26 12:26:19 | 只看該作者
Multilinear Algebra and Tensors,Smooth functions, vector fields and 1-forms are . of fairly simple types. In order to handle higher order tensors, we will need some rather sophisticated multilinear algebra. The reader who is well grounded in the multilinear algebra of .-modules can skip ahead to Section 7.4, referring to the first three sections only as needed.
29#
發(fā)表于 2025-3-26 14:03:09 | 只看該作者
Forms and Foliations,In Section 4.5, we proved the vector field version of the Frobenius integrability theorem: . Γ(.) .(.) .. In this chapter, we develop an equivalent version of this theorem, stated in terms of the Grassmann algebra .*(.) of differential forms. Useful consequences of this point of view will be treated.
30#
發(fā)表于 2025-3-26 18:21:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 15:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大安市| 滦平县| 乐业县| 太仆寺旗| 临城县| 淮阳县| 黄大仙区| 灵寿县| 措勤县| 大庆市| 遵义县| 石家庄市| 旌德县| 东乡| 革吉县| 大悟县| 宁都县| 桃园市| 安多县| 梁山县| 宝应县| 遵义县| 嵊泗县| 兴文县| 新密市| 介休市| 五峰| 南京市| 尼木县| 黑龙江省| 东乌珠穆沁旗| 若尔盖县| 玉山县| 北川| 彩票| 寿光市| 崇仁县| 蒲城县| 藁城市| 潜江市| 洛川县|