找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Diffeomorphisms of Elliptic 3-Manifolds; Sungbok Hong,John Kalliongis,J. Hyam Rubinstein Book 2012 Springer-Verlag Berlin Heidelberg 2012

[復(fù)制鏈接]
樓主: Daguerreotype
11#
發(fā)表于 2025-3-23 10:41:57 | 只看該作者
,Fünfter Teil: K?mpfe des Rechtsgefühls,d section, we will state our main results on the Smale Conjecture, and provide some historical context. In the final two sections, we discuss isometries of nonelliptic three-manifolds, and address the possibility of applying Perelman’s methods to the Smale Conjecture.
12#
發(fā)表于 2025-3-23 17:04:26 | 只看該作者
13#
發(fā)表于 2025-3-23 20:04:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:47:59 | 只看該作者
Book 2012mannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equi
16#
發(fā)表于 2025-3-24 07:21:40 | 只看該作者
https://doi.org/10.1007/978-3-662-62120-2uction of the elliptic three-manifolds that contain a one-sided geometrically incompressible Klein bottle; they are described as a family of manifolds .(., .) that depend on two integer parameters .. Section 4.2 is a section-by-section outline of the entire proof, which constitutes the remaining sections of the chapter.
17#
發(fā)表于 2025-3-24 11:53:15 | 只看該作者
Elliptic Three-Manifolds Containing One-Sided Klein Bottles,uction of the elliptic three-manifolds that contain a one-sided geometrically incompressible Klein bottle; they are described as a family of manifolds .(., .) that depend on two integer parameters .. Section 4.2 is a section-by-section outline of the entire proof, which constitutes the remaining sections of the chapter.
18#
發(fā)表于 2025-3-24 15:21:26 | 只看該作者
Sungbok Hong,John Kalliongis,J. Hyam RubinsteinIncludes supplementary material:
19#
發(fā)表于 2025-3-24 21:48:42 | 只看該作者
20#
發(fā)表于 2025-3-24 23:28:28 | 只看該作者
Diffeomorphisms and Embeddings of Manifolds, the manifolds involved are compact. Versions of these and related facts are developed for manifolds with boundary, as well as in the context of fiber-preserving diffeomorphisms and maps. The latter utilizes a modification of the exponential map, called the aligned exponential, adapted to the fibered structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 19:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木萨尔县| 寻甸| 莫力| 湖口县| 始兴县| 沙湾县| 彭水| 西畴县| 南京市| 莆田市| 若尔盖县| 榆树市| 林西县| 阿克苏市| 项城市| 泉州市| 察哈| 永泰县| 平江县| 邯郸县| 溧水县| 鄂尔多斯市| 江西省| 乐东| 含山县| 镇平县| 罗城| 江津市| 遂昌县| 隆昌县| 托克托县| 临沂市| 中超| 中山市| 邯郸县| 涡阳县| 海丰县| 陈巴尔虎旗| 肇源县| 聂拉木县| 焦作市|