找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Die Theorie der Gruppen von Endlicher Ordnung; Mit Anwendungen auf Andreas Speiser Book 1956Latest edition Springer Basel AG 1956 Algebra.

[復(fù)制鏈接]
樓主: morphology
21#
發(fā)表于 2025-3-25 04:28:22 | 只看該作者
Die Grundlagen,Ein System von verschiedenen Elementen bildet eine . wenn folgende vier Postulate erfüllt sind:
22#
發(fā)表于 2025-3-25 10:19:05 | 只看該作者
Normalteiler und Faktorgruppen,Besteht zwischen zwei Elementen . und . einer Gruppe G eine Beziehung von der Gestalt ..., wobei . ebenfalls in G liegt, so hei?en . und .. oder . und man sagt: ....
23#
發(fā)表于 2025-3-25 13:05:41 | 只看該作者
24#
發(fā)表于 2025-3-25 19:41:21 | 只看該作者
25#
發(fā)表于 2025-3-25 21:32:31 | 只看該作者
Die Krystallklassen,. werden erzeugt durch drei Vektoren p., p. und p., deren Richtungen nicht derselben Ebene angeh?ren, indem man sie von einem beliebigen Punkt aus positiv und negativ beliebig abtr?gt. Eine Ebene, die drei nicht in einer Geraden liegende Gitterpunkte enth?lt, hei?t eine .. Die in ihr liegenden Gitterpunkte des Gitters bilden ein ebenes Gitter.
26#
發(fā)表于 2025-3-26 01:05:29 | 只看該作者
Automorphismen,Ist G irgendeine Gruppe und . eines ihrer Elemente, so erh?lt man durch Transformation aller Elemente von G mit . einen Automorphismus (§ 9) von G. Ist n?mlich ., so folgt daraus ... · ......
27#
發(fā)表于 2025-3-26 05:57:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:27:16 | 只看該作者
Gruppencharaktere,Sind Γ und Γ′ zwei irreduzible Darstellungen von G, so besteht zwischen den beiden Charakterensystemen die Gleichung
29#
發(fā)表于 2025-3-26 14:20:40 | 只看該作者
30#
發(fā)表于 2025-3-26 18:27:10 | 只看該作者
,Arithmetische Untersuchungen über Substitutionsgruppen,Jede endliche Gruppe linearer Substitutionen l??t sich so transformieren, da? ihre Koeffizienten in einem algebraischen Zahlk?rper liegen.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遵义市| 阳东县| 太湖县| 连平县| 鄂托克旗| 丹江口市| 托克托县| 谢通门县| 桦川县| 安龙县| 金阳县| 临桂县| 阿坝县| 清丰县| 乐平市| 准格尔旗| 柯坪县| 丘北县| 韶山市| 海林市| 西乌| 云梦县| 杨浦区| 瓦房店市| 溧阳市| 长顺县| 扶沟县| 夹江县| 高淳县| 明溪县| 遵义县| 孟村| 日土县| 濉溪县| 内江市| 砚山县| 南郑县| 临朐县| 揭阳市| 凉城县| 龙南县|