找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Development in Language Theory; 15th International C Giancarlo Mauri,Alberto Leporati Conference proceedings 2011 Springer-Verlag GmbH Berl

[復(fù)制鏈接]
樓主: Hermit
41#
發(fā)表于 2025-3-28 18:22:22 | 只看該作者
42#
發(fā)表于 2025-3-28 20:39:11 | 只看該作者
https://doi.org/10.1007/978-3-319-30334-5xity of right ideals and prefix-closed languages, and that there exist left ideals and suffix-closed languages of syntactic complexity ..?+?.???1, and two-sided ideals and factor-closed languages of syntactic complexity ..?+?(.???2)2.?+?1.
43#
發(fā)表于 2025-3-28 22:55:59 | 只看該作者
44#
發(fā)表于 2025-3-29 06:00:07 | 只看該作者
45#
發(fā)表于 2025-3-29 07:14:27 | 只看該作者
46#
發(fā)表于 2025-3-29 13:19:22 | 只看該作者
47#
發(fā)表于 2025-3-29 18:01:49 | 只看該作者
User Generated Dialogue Systems: uDialogue,in this class of languages. Then we prove the existence of a unique maximal autosimulation relation in a given 2OTA and the existence of a unique minimal 2OTA which is simulation equivalent to this given 2OTA, both computable in polynomial time.
48#
發(fā)表于 2025-3-29 21:58:31 | 只看該作者
49#
發(fā)表于 2025-3-30 02:05:52 | 只看該作者
Avoiding Abelian Powers in Partial Wordsabelian .-free partial words of length . with . holes over a given alphabet grows exponentially as . increases. Finally, we prove that we cannot avoid abelian .th powers under arbitrary insertion of holes in an infinite word.
50#
發(fā)表于 2025-3-30 07:51:42 | 只看該作者
Simulations over Two-Dimensional On-Line Tessellation Automatain this class of languages. Then we prove the existence of a unique maximal autosimulation relation in a given 2OTA and the existence of a unique minimal 2OTA which is simulation equivalent to this given 2OTA, both computable in polynomial time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
陵川县| 凤庆县| 大同县| 苍溪县| 营口市| 嘉祥县| 肥东县| 调兵山市| 大英县| 准格尔旗| 永年县| 靖边县| 密山市| 巩留县| 海林市| 新邵县| 新源县| 广饶县| 福海县| 湖北省| 凤翔县| 寿光市| 绵竹市| 阜康市| 晋州市| 成武县| 岱山县| 锡林浩特市| 深圳市| 革吉县| 长白| 黎川县| 涞水县| 于田县| 威宁| 昔阳县| 辰溪县| 鹤庆县| 莲花县| 什邡市| 丰台区|