找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Developments and Novel Approaches in Nonlinear Solid Body Mechanics; Bilen Emek Abali,Ivan Giorgio Book 2020 Springer Nature Switzerland A

[復(fù)制鏈接]
樓主: formation
21#
發(fā)表于 2025-3-25 06:46:30 | 只看該作者
22#
發(fā)表于 2025-3-25 10:41:00 | 只看該作者
23#
發(fā)表于 2025-3-25 15:43:50 | 只看該作者
24#
發(fā)表于 2025-3-25 17:42:49 | 只看該作者
Book 2020anics. Innovative methods like additive manufacturing—for example, 3D printing— and miniaturization mean that engineers need more accurate techniques for modeling solid body mechanics. The book focuses on the formulation of continuum and discrete models for complex materials and systems, particularl
25#
發(fā)表于 2025-3-25 20:31:31 | 只看該作者
26#
發(fā)表于 2025-3-26 00:19:32 | 只看該作者
Stages and Semidirect Products with Cocycles held during the conference. It is mainly aimed at providing interested researchers with a track of the contents discussed during the conference and with the relevant bibliography of the plenary lectures. Additional information, such as the abstracts of all the talks, can be found on the official web-site of the conference: ..
27#
發(fā)表于 2025-3-26 08:09:33 | 只看該作者
28#
發(fā)表于 2025-3-26 12:32:36 | 只看該作者
29#
發(fā)表于 2025-3-26 16:00:47 | 只看該作者
30#
發(fā)表于 2025-3-26 19:31:22 | 只看該作者
Hamiltonsche Mechanik und QuantenmechanikThe aim of this article is constructing asymptotics of solution of ordinary differential equations with holomorphic coefficients in neighborhood of infinity. Since infinity in general is irregular singular point then problem of representing asymptotics of solution of an equation is a special case of Poincare problem.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汝城县| 澳门| 民权县| 阜平县| 牙克石市| 阜康市| 翁源县| 勐海县| 漠河县| 东宁县| 长宁区| 噶尔县| 宜丰县| 额尔古纳市| 崇阳县| 镇赉县| 江油市| 武平县| 白河县| 莱西市| 瓮安县| 来安县| 自治县| 霍邱县| 汕头市| 花莲市| 镇平县| 泽库县| 兰坪| 青河县| 邳州市| 明水县| 泰宁县| 平原县| 屯昌县| 越西县| 深水埗区| 虎林市| 崇礼县| 偏关县| 台中市|