找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[復(fù)制鏈接]
樓主: 烈酒
41#
發(fā)表于 2025-3-28 18:30:47 | 只看該作者
42#
發(fā)表于 2025-3-28 22:31:46 | 只看該作者
43#
發(fā)表于 2025-3-29 01:23:26 | 只看該作者
J. Vielkind,M. Schwab,F. AndersIn general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
44#
發(fā)表于 2025-3-29 04:17:31 | 只看該作者
Dynamical Systems with One Degree of Freedom,Consider a class of autonomous continuous-time dynamical systems whose state at any time can be unambiguously given by a variable . and its derivative .. The phase space of such a system is the phase plane (., .). Thus, the phase space dimension is . = 2 and the number of degrees of freedom is ..
45#
發(fā)表于 2025-3-29 10:16:45 | 只看該作者
,The Anishchenko–Astakhov Oscillator of Chaotic Self-Sustained Oscillations,In general form, self-sustained oscillatory systems with one degree of freedom are described by the equation . where . is a variable oscillating periodically, . and . are nonlinear functions characterizing the action of forces providing periodic self-sustained oscillations, and . is a vector of parameters ..
46#
發(fā)表于 2025-3-29 12:18:53 | 只看該作者
https://doi.org/10.1007/978-3-319-06871-8Anishchenko-Astakhov Oscillator; Deterministic Chaos Theory; Nonlinear Dynamics Textbook; Oscillations
47#
發(fā)表于 2025-3-29 18:52:46 | 只看該作者
978-3-319-37852-7Springer International Publishing Switzerland 2014
48#
發(fā)表于 2025-3-29 20:56:11 | 只看該作者
Cesar Petri,Ralph Scorza,Chris Dardick natural sciences. It amounts to finding a law that enables us to define the future state of the system at a time . > .. when given some information on the system at the initial time ... Depending on the complexity of the system, this law can be deterministic or probabilistic, and it can describe ei
49#
發(fā)表于 2025-3-30 00:55:54 | 只看該作者
50#
發(fā)表于 2025-3-30 07:29:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大理市| 师宗县| 通河县| 政和县| 垫江县| 宣恩县| 嘉义市| 靖安县| 拉孜县| 湟中县| 临西县| 新昌县| 潍坊市| 南丹县| 普宁市| 东平县| 甘南县| 万源市| 资阳市| 安仁县| 娄底市| 墨玉县| 泸定县| 杭州市| 滦平县| 额敏县| 大方县| 蒙城县| 海口市| 吴堡县| 昂仁县| 西城区| 吉首市| 麟游县| 鄂托克前旗| 桂东县| 岗巴县| 平安县| 宁河县| 仙桃市| 延庆县|