找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deterministic Nonlinear Systems; A Short Course Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina Textbook 2014 Springer International Pub

[復(fù)制鏈接]
樓主: 烈酒
31#
發(fā)表于 2025-3-26 21:07:53 | 只看該作者
Cesar Petri,Ralph Scorza,Chris Dardickn the system at the initial time ... Depending on the complexity of the system, this law can be deterministic or probabilistic, and it can describe either the temporal or the spatio-temporal evolution of the system.
32#
發(fā)表于 2025-3-27 01:36:24 | 只看該作者
33#
發(fā)表于 2025-3-27 08:52:49 | 只看該作者
Genomics of Viral–Soybean Interactions by more complicated ones. Under certain conditions, nonlinearity can lead to the onset of dynamical chaos. Moving along a relevant direction in the parameter space, a sequence of bifurcations can be observed, resulting in the appearance of a chaotic attractor. Such typical bifurcation sequences are called ., or ..
34#
發(fā)表于 2025-3-27 11:08:46 | 只看該作者
35#
發(fā)表于 2025-3-27 15:27:15 | 只看該作者
Stability of Dynamical Systems: Linear Approach,inherent in any system. The common feature is that, when we talk about stability, we understand the way the dynamical system reacts to a small perturbation of its state. If arbitrarily small changes in the system state begin to grow in time, the system is unstable. Otherwise, small perturbations dec
36#
發(fā)表于 2025-3-27 19:32:06 | 只看該作者
,Systems with Phase Space Dimension , ≥ 3: Deterministic Chaos,ons can be observed. New types of attractors can emerge, namely, two-dimensional and multi-dimensional tori corresponding to quasiperiodic regimes, and strange chaotic attractors, which are the signature of dynamical chaos. Special types of DS behavior and special ‘exotic’ attractors can be observed
37#
發(fā)表于 2025-3-27 22:24:49 | 只看該作者
38#
發(fā)表于 2025-3-28 03:57:15 | 只看該作者
39#
發(fā)表于 2025-3-28 08:12:13 | 只看該作者
40#
發(fā)表于 2025-3-28 11:17:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 12:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家界市| 高淳县| 水富县| 加查县| 历史| 建湖县| 垣曲县| 广西| 河津市| 周宁县| 胶州市| 宜春市| 江阴市| 威远县| 古田县| 永善县| 淮北市| 团风县| 建瓯市| 海原县| 宜城市| 邯郸县| 抚远县| 汶川县| 鄂托克旗| 伽师县| 南召县| 子长县| 东宁县| 缙云县| 冕宁县| 房山区| 双峰县| 麻阳| 青海省| 淮南市| 丰县| 柳州市| 额敏县| 海兴县| 星子县|