找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Determinants, Gr?bner Bases and Cohomology; Winfried Bruns,Aldo Conca,Matteo Varbaro Book 2022 Springer Nature Switzerland AG 2022 Determi

[復(fù)制鏈接]
樓主: 動(dòng)詞
11#
發(fā)表于 2025-3-23 13:15:16 | 只看該作者
Generations of Women HistoriansChapter 5 covers the existence of universal Gr?bner bases of determinantal ideals as far as they are known, namely maximal minors and 2-minors. The approach to the case of maximal minors is particularly simple.
12#
發(fā)表于 2025-3-23 17:44:05 | 只看該作者
,Gr?bner Bases, Initial Ideals and Initial Algebras,The first chapter gives a compact, but quite complete introduction to Gr?bner bases and Sagbi bases in general. The focus is on the structural aspects, namely, the use of Gr?bner and Sagbi degenerations in the transfer of homological and enumerative information from Stanley-Reisner and/or toric rings to those objects that degenerate to them.
13#
發(fā)表于 2025-3-23 20:57:37 | 只看該作者
14#
發(fā)表于 2025-3-24 00:35:41 | 只看該作者
,Determinantal Ideals and?the?Straightening Law,In this chapter gives a short introduction to standard bitableaux and the straightening law. This powerful technique is the key to structural properties of determinantal rings. But it is also of central importance for the computation of Gr?bner and Sagbi bases on the one hand and for the representation theoretic approach on the other.
15#
發(fā)表于 2025-3-24 06:18:50 | 只看該作者
,Universal Gr?bner Bases,Chapter 5 covers the existence of universal Gr?bner bases of determinantal ideals as far as they are known, namely maximal minors and 2-minors. The approach to the case of maximal minors is particularly simple.
16#
發(fā)表于 2025-3-24 09:21:20 | 只看該作者
Winfried Bruns,Aldo Conca,Matteo VarbaroCombines representation theoretic and geometric methods to study determinantal varieties.Explores the theoretical use of Gr?bner and Sagbi bases.Contains everything you always wanted to know about Cas
17#
發(fā)表于 2025-3-24 13:34:04 | 只看該作者
18#
發(fā)表于 2025-3-24 18:29:40 | 只看該作者
19#
發(fā)表于 2025-3-24 19:42:46 | 只看該作者
20#
發(fā)表于 2025-3-25 00:42:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
来安县| 滦南县| 廉江市| 固镇县| 崇仁县| 新津县| 清新县| 峡江县| 大丰市| 琼中| SHOW| 瑞金市| 和田县| 绍兴县| 平利县| 东台市| 壤塘县| 宣城市| 南平市| 东台市| 临潭县| 大连市| 五大连池市| 广平县| 徐水县| 山阳县| 黑河市| 沧州市| 双柏县| 新平| 武汉市| 灵台县| 额尔古纳市| 惠来县| 台湾省| 斗六市| 吉隆县| 隆德县| 宁河县| 乌恰县| 绥德县|