找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Desingularization: Invariants and Strategy; Application to Dimen Vincent Cossart,Uwe Jannsen,Shuji Saito Book 2020 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Bunion
11#
發(fā)表于 2025-3-23 10:28:50 | 只看該作者
https://doi.org/10.1007/978-3-322-96526-4In this chapter we prove the Key Theorem . in Chap. ., by deducing it from a stronger result, Theorem 10.2 below. Moreover we will give an explicit bound on the length of the fundamental sequence, by the .-invariant of the polyhedron at the beginning. First we introduce a basic setup.
12#
發(fā)表于 2025-3-23 13:58:25 | 只看該作者
J?rg H?ppner,Dieter Feige,Werner DelfmannIn order to show key Theorem . in Chap. ., we recall further invariants for singularities, which were defined by Hironaka. The definition works for any dimension, as long as the directrix is 2-dimensional.
13#
發(fā)表于 2025-3-23 19:25:40 | 只看該作者
J?rg H?ppner,Dieter Feige,Werner DelfmannIn this chapter we prepare some key lemmas for the proof of Theorem ..
14#
發(fā)表于 2025-3-23 23:31:35 | 只看該作者
https://doi.org/10.1007/978-3-322-96526-4In this chapter we prove Theorem 13.7 below, which implies Key Theorem . under the assumption that the residue fields of the initial points of . are separably algebraic over that of .. The proof is divided into two steps.
15#
發(fā)表于 2025-3-24 03:24:48 | 只看該作者
J?rg H?ppner,Dieter Feige,Werner DelfmannIn this chapter we complete the proof of key Theorem . (see Theorem 14.4 below).
16#
發(fā)表于 2025-3-24 09:11:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:19:57 | 只看該作者
18#
發(fā)表于 2025-3-24 15:28:47 | 只看該作者
19#
發(fā)表于 2025-3-24 22:44:05 | 只看該作者
20#
發(fā)表于 2025-3-25 03:00:56 | 只看該作者
Basic Invariants for Singularities,In this chapter we introduce some basic invariants for singularities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 23:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临沧市| 乌拉特中旗| 彭阳县| 竹山县| 沅陵县| 怀安县| 腾冲县| 云霄县| 建昌县| 游戏| 岳阳县| 武鸣县| 金坛市| 开远市| 屏东市| 连城县| 阿图什市| 南昌县| 香格里拉县| 南雄市| 西乌珠穆沁旗| 长春市| 绿春县| 孟州市| 长治市| 连江县| 江源县| 和政县| 普安县| 凤台县| 松桃| 贡山| 乌兰浩特市| 陕西省| 海宁市| 易门县| 南召县| 昭苏县| 淄博市| 雷波县| 板桥市|