找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Designs 2002; Further Computationa W. D. Wallis Book 2003Latest edition Springer Science+Business Media New York 2003 algorithms.computer.c

[復(fù)制鏈接]
樓主: Harrison
21#
發(fā)表于 2025-3-25 06:30:32 | 只看該作者
Sets of Steiner Triple Systems of Order 9 Revisited,We determine all minimal large sets of 8 Steiner triple systems of order 9 (STS(9)); there are precisely four pairwise nonisomorphic solutions. We also classify all maximal sets of STS(9) which mutually intersect in the same number of triples (uniformly intersecting sets).
22#
發(fā)表于 2025-3-25 10:14:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:31:06 | 只看該作者
24#
發(fā)表于 2025-3-25 17:25:39 | 只看該作者
25#
發(fā)表于 2025-3-25 22:50:32 | 只看該作者
26#
發(fā)表于 2025-3-26 02:44:49 | 只看該作者
https://doi.org/10.1007/978-3-322-90425-6he profile and projections of Hadamard matrices. A summary is then given which considers inequivalence of Hadamard matrices of orders up to 44..The final two sections give algorithms for constructing orthogonal designs, short amicable and amicable sets for use in the Kharaghani array.
27#
發(fā)表于 2025-3-26 04:23:24 | 只看該作者
https://doi.org/10.1007/978-3-322-90425-6based on an analysis of group actions and improves on Burnside’s table of marks approach [15]. In particular, no knowledge of the full subgroup lattice of the symmetric group on the point set is needed.
28#
發(fā)表于 2025-3-26 11:47:10 | 只看該作者
29#
發(fā)表于 2025-3-26 15:32:07 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:35 | 只看該作者
https://doi.org/10.1007/978-3-322-90425-6es and defining sets of the triple system and the latin trades and critical sets of the square..We apply these ideas and construct new families of minimal defining sets for triple systems associated with .(., 3).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣庄市| 呼图壁县| 玉树县| 嵊州市| 元阳县| 泗洪县| 南阳市| 大埔县| 孟州市| 庐江县| 晴隆县| 黑龙江省| 瓦房店市| 鹿泉市| 固镇县| 扬州市| 塘沽区| 梓潼县| 泾阳县| 新民市| 邮箱| 左权县| 苍溪县| 镇江市| 嘉义县| 铅山县| 威宁| 鹤壁市| 闸北区| 大田县| 陵水| 岗巴县| 桐梓县| 社旗县| 卫辉市| 房山区| 梁山县| 拜城县| 高陵县| 富阳市| 华宁县|