找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Design of Digital Chaotic Systems Updated by Random Iterations; Qianxue Wang,Simin Yu,Christophe Guyeux Book 2018 The Author(s) 2018 Digit

[復(fù)制鏈接]
樓主: 使入伍
11#
發(fā)表于 2025-3-23 12:07:23 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:19 | 只看該作者
SpringerBriefs in Applied Sciences and Technologyhttp://image.papertrans.cn/d/image/268699.jpg
13#
發(fā)表于 2025-3-23 18:42:20 | 只看該作者
14#
發(fā)表于 2025-3-23 23:26:04 | 只看該作者
https://doi.org/10.1007/978-3-030-27435-1In this chapter, we first recall the basic concept of real domain chaotic systems (RDCS) and integer domain chaotic systems (IDCS). Let . be a positive integer, . denote the set of Boolean numbers with its usual algebraic structure, and . the set of binary vectors of size ..
15#
發(fā)表于 2025-3-24 04:15:58 | 只看該作者
16#
發(fā)表于 2025-3-24 08:53:48 | 只看該作者
An Introduction to Digital Chaotic Systems Updated by Random Iterations,The objective of this first chapter is to introduce the so-called digital chaotic systems updated by random iterations and to present the latest developments in this field of research. Basic notations and terminologies are also provided for the sake of completeness.
17#
發(fā)表于 2025-3-24 11:17:30 | 只看該作者
18#
發(fā)表于 2025-3-24 16:35:57 | 只看該作者
19#
發(fā)表于 2025-3-24 20:36:08 | 只看該作者
Book 2018nal settings, and establishes a general framework for composing them. The contributors demonstrate that the associated state networks of digital chaotic systems are strongly connected. They then further prove that digital chaotic systems satisfy Devaney’s definition of chaos on the domain of finite
20#
發(fā)表于 2025-3-25 02:02:38 | 只看該作者
Michelle A. Harrison,Aurélie Joubertle gate array (FPGA) platform. As each operation of HDDCS is executed in the same fixed precision, no quantization loss occurs. Therefore, it provides a perfect solution to the dynamical degradation of digital chaos.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汶川县| 阿合奇县| 扎鲁特旗| 远安县| 那曲县| 深圳市| 保德县| 湾仔区| 醴陵市| 和林格尔县| 抚松县| 澎湖县| 邓州市| 汨罗市| 花莲县| 通州市| 普陀区| 杂多县| 鹤岗市| 湘阴县| 陇川县| 交城县| 汨罗市| 阜康市| 富阳市| 永顺县| 新和县| 新巴尔虎右旗| 中山市| 都匀市| 社会| 宁安市| 祁门县| 翁源县| 都江堰市| 柏乡县| 巴彦淖尔市| 察雅县| 西和县| 廊坊市| 广宗县|