找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Design of Canals; P.K. Swamee,B.R. Chahar Book 2015 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer N

[復(fù)制鏈接]
樓主: cobble
31#
發(fā)表于 2025-3-26 21:22:08 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:31 | 只看該作者
https://doi.org/10.1007/978-3-642-66020-7quation is more appropriate. Direct analytic solution of the normal depth in natural/stable channel section is not possible, as the governing equation is implicit and it requires a tedious method of trial and error. Explicit expressions for normal depth associated with viscous flow in rectangular ch
33#
發(fā)表于 2025-3-27 06:09:01 | 只看該作者
Lelio Orci M.D.,Alain Perrelet M.D.erted in the unconstrained form through penalty function. A nondimensional parameter approach has been used to simplify the analysis. The dimensionless augmented function was minimized using a grid search algorithm. Using results of the optimization procedure and error minimization, close approximat
34#
發(fā)表于 2025-3-27 12:40:54 | 只看該作者
Leila Haaparanta,Jaakko Hintikkaion of optimization procedure in the wide application ranges of input variables. The analysis consists of conceiving an appropriate functional form and then minimizing errors between the optimal values and the computed values from the conceived function with coefficients. Particular cases like minim
35#
發(fā)表于 2025-3-27 15:48:19 | 只看該作者
Semantic Content and Cognitive Sense for triangular, rectangular, trapezoidal, parabolic, and power law canals. The chapter also includes special cases, for example, minimum seepage loss sections without drainage layer and minimum seepage loss sections with drainage layer at shallow depth. The resultant explicit equations for the desi
36#
發(fā)表于 2025-3-27 19:57:55 | 只看該作者
Semantic Content and Cognitive Sensectangular, and trapezoidal shapes. The optimal dimensions for any shape can be obtained from proposed equations along with tabulated section shape coefficients. The optimal design equations are in explicit form and result into optimal dimensions of a canal in single-step computations that avoid the
37#
發(fā)表于 2025-3-27 23:11:48 | 只看該作者
38#
發(fā)表于 2025-3-28 05:24:59 | 只看該作者
39#
發(fā)表于 2025-3-28 09:01:15 | 只看該作者
Objective Functions,nd scour. Using Lacey’s equations for stable channel geometry and using geometric programming, an objective function for stable alluvial channels can be synthesized. Thus, this chapter formulates objective functions for rigid boundary canals and mobile boundary (natural) canals.
40#
發(fā)表于 2025-3-28 11:22:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
清水县| 罗田县| 花垣县| 通海县| 信阳市| 泰州市| 集安市| 赞皇县| 太康县| 湄潭县| 盘锦市| 旬阳县| 巢湖市| 道孚县| 白山市| 林甸县| 弥勒县| 南和县| 剑河县| 苏尼特左旗| 潞西市| 南木林县| 繁昌县| 桓仁| 德安县| 自贡市| 北辰区| 乌拉特前旗| 荃湾区| 滨海县| 西畴县| 福贡县| 吉首市| 扎囊县| 江油市| 仪陇县| 会宁县| 黎城县| 扎兰屯市| 灌云县| 宿州市|