找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Design Considerations of Time in Fuzzy Systems; Jernej Virant Book 2000 Springer Science+Business Media Dordrecht 2000 Calculation.functio

[復(fù)制鏈接]
樓主: 熱情美女
21#
發(fā)表于 2025-3-25 06:41:48 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:01 | 只看該作者
https://doi.org/10.1007/978-1-349-06744-2is mathematical in nature, being infinitesimally small, so that no matter how short the interval of the line we select there is always an infinite number of points within the boundaries of the chosen interval. Fig. 1.1 shows such a line with number 4 5 marked. There is no uncertainty regarding this
23#
發(fā)表于 2025-3-25 13:30:26 | 只看該作者
24#
發(fā)表于 2025-3-25 17:03:35 | 只看該作者
Finnish-Soviet Economic Relationsmake certain generalizations with regard to the values, sets and variables used in ordinary mathematics. The same holds for the development of the fuzzy function concept. Fuzzy functions are treated within a relatively large area of research known as fuzzy analysis. We have no desire to discuss the
25#
發(fā)表于 2025-3-25 20:55:56 | 只看該作者
Cooperation from the Company Viewpoint single fuzzy rule; we need a complete list of rules which can be named a .. This is actually a prescription from which corrective information is derived to direct the actions of the fuzzy controlled system. It is not hard to envision this list of rules as the source of such information. If the list
26#
發(fā)表于 2025-3-26 04:11:42 | 只看該作者
27#
發(fā)表于 2025-3-26 07:59:45 | 只看該作者
28#
發(fā)表于 2025-3-26 12:08:15 | 只看該作者
29#
發(fā)表于 2025-3-26 15:30:36 | 只看該作者
30#
發(fā)表于 2025-3-26 20:45:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 03:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
梅州市| 元谋县| 德昌县| 扶风县| 江孜县| 平潭县| 博白县| 武穴市| 阿巴嘎旗| 杭锦后旗| 会理县| 无为县| 明溪县| 定兴县| 龙南县| 沧源| 永定县| 隆化县| 文山县| 亳州市| 曲沃县| 台湾省| 昌邑市| 乌什县| 十堰市| 盐边县| 吴忠市| 泰州市| 商水县| 囊谦县| 和龙市| 随州市| 衡东县| 孝感市| 曲阜市| 新干县| 灵川县| 德保县| 沙坪坝区| 华安县| 苏州市|