找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Descriptional Complexity of Formal Systems; 15th International W Helmut Jurgensen,Rogério Reis Conference proceedings 2013 Springer-Verlag

[復(fù)制鏈接]
樓主: ARRAY
11#
發(fā)表于 2025-3-23 13:09:30 | 只看該作者
William L. Jaffe MD,Harlan B. Levine MDtransitions in a minimal finite automaton accepting a regular language, and apparently, this number has no connection to Chaitin-Kolmogorov complexity. In this paper we establish such a connection by extending the notions of Blum static complexity and of encoded function space.
12#
發(fā)表于 2025-3-23 14:12:05 | 只看該作者
Glass Fiber Reinforced Polymers,sions, and syntactic monoids. It turns out that as in the case of ordinary finite automata nondeterministic biautomata are superior to biautomata with respect to their relative succinctness in representing regular languages.
13#
發(fā)表于 2025-3-23 18:20:48 | 只看該作者
https://doi.org/10.1007/978-3-319-78766-4regular languages over an (.???2)-element alphabet and a few tight bounds for binary .-trivial regular languages. The case of .-trivial regular languages over an (.???.)-element alphabet, for 2?≤?.?≤?.???3, is open.
14#
發(fā)表于 2025-3-23 22:14:10 | 只看該作者
Blum Static Complexity and Encoding Spaces,transitions in a minimal finite automaton accepting a regular language, and apparently, this number has no connection to Chaitin-Kolmogorov complexity. In this paper we establish such a connection by extending the notions of Blum static complexity and of encoded function space.
15#
發(fā)表于 2025-3-24 06:14:23 | 只看該作者
Nondeterministic Biautomata and Their Descriptional Complexity,sions, and syntactic monoids. It turns out that as in the case of ordinary finite automata nondeterministic biautomata are superior to biautomata with respect to their relative succinctness in representing regular languages.
16#
發(fā)表于 2025-3-24 09:50:55 | 只看該作者
On the State Complexity of the Reverse of ,- and ,-Trivial Regular Languages,regular languages over an (.???2)-element alphabet and a few tight bounds for binary .-trivial regular languages. The case of .-trivial regular languages over an (.???.)-element alphabet, for 2?≤?.?≤?.???3, is open.
17#
發(fā)表于 2025-3-24 13:58:54 | 只看該作者
18#
發(fā)表于 2025-3-24 18:28:07 | 只看該作者
19#
發(fā)表于 2025-3-24 22:20:24 | 只看該作者
20#
發(fā)表于 2025-3-25 01:44:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上思县| 长岭县| 松溪县| 揭东县| 罗江县| 盐亭县| 阿图什市| 景德镇市| 三明市| 丘北县| 交城县| 博乐市| 鸡西市| 鞍山市| 江北区| 新昌县| 思茅市| 拜泉县| 江津市| 肃北| 安庆市| 都安| 泰安市| 乌兰县| 聊城市| 封开县| 天峻县| 曲靖市| 紫阳县| 陵水| 祁阳县| 昂仁县| 称多县| 渝中区| 庆云县| 阿拉善左旗| 长乐市| 赤壁市| 喜德县| 白银市| 临西县|