找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Delay Differential Equations; Recent Advances and David E. Gilsinn,Tamás Kalmár-Nagy,Balakumar Balac Book 20091st edition Springer-Verlag

[復(fù)制鏈接]
樓主: 能干
41#
發(fā)表于 2025-3-28 16:52:02 | 只看該作者
42#
發(fā)表于 2025-3-28 19:14:21 | 只看該作者
Lyapunov-Krasovskii Functional Approach for Coupled Differential-Difference Equations with Multiple neutral type, as well as singular systems, can all be considered as special cases of coupled DDEs. The coupled DDE formulation is especially effective when a system has a large number of state variables, but only a few of them involve time delays. In this chapter, the stability of such systems is s
43#
發(fā)表于 2025-3-29 01:34:11 | 只看該作者
44#
發(fā)表于 2025-3-29 06:38:08 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:37 | 只看該作者
Stability Analysis and Control of Linear Periodic Delayed Systems Using Chebyshev and Temporal Finis represented by linear time-periodic delay-differential equations using the Chebyshev and temporal finite element analysis (TFEA) techniques. Here, the analysis and examples assume that there is a single fixed discrete delay, which is equal to the principal period. Two Chebyshev-based methods, Cheb
46#
發(fā)表于 2025-3-29 12:17:33 | 只看該作者
Systems with Periodic Coefficients and Periodically Varying Delays: Semidiscretization-Based Stabildically varying. The stability of periodic solutions of these systems are analyzed by using the semidiscretization method. By employing this method, the periodic coefficients and the delay terms are approximated as constants over a time interval, and the delay differential system is reduced to a set
47#
發(fā)表于 2025-3-29 17:22:51 | 只看該作者
Bifurcations, Center Manifolds, and Periodic Solutions,rential equations (DDEs) usually have parameters in their formulation. How the nature of the solutions change as the parameters vary is crucial to understanding the underlying physical processes. When the DDE is reduced, at an equilibrium point, to leading linear terms and the remaining nonlinear te
48#
發(fā)表于 2025-3-29 20:09:43 | 只看該作者
Center Manifold Analysis of the Delayed Lienard Equation, bifurcation is established based on the reduction of the infinite-dimensional problem onto a twodimensional center manifold. Numerics based on DDE-Biftool are given to compare with the authors’ theoretical calculation. The Liénard type sunflower equation is discussed as an illustrative example base
49#
發(fā)表于 2025-3-30 03:20:00 | 只看該作者
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 00:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺州市| 顺平县| 确山县| 昔阳县| 尚义县| 景泰县| 平顶山市| 拉萨市| 桂阳县| 德阳市| 丹江口市| 巴彦淖尔市| 牡丹江市| 禹州市| 长汀县| 金坛市| 馆陶县| 综艺| 江永县| 体育| 上杭县| 始兴县| 江安县| 偃师市| 集贤县| 浦县| 南雄市| 会理县| 深泽县| 定南县| 巩留县| 东源县| 明水县| 沙坪坝区| 临猗县| 诸暨市| 镇原县| 饶河县| 宣化县| 库尔勒市| 石狮市|