找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Delay Differential Equations; Recent Advances and David E. Gilsinn,Tamás Kalmár-Nagy,Balakumar Balac Book 20091st edition Springer-Verlag

[復(fù)制鏈接]
樓主: 能干
41#
發(fā)表于 2025-3-28 16:52:02 | 只看該作者
42#
發(fā)表于 2025-3-28 19:14:21 | 只看該作者
Lyapunov-Krasovskii Functional Approach for Coupled Differential-Difference Equations with Multiple neutral type, as well as singular systems, can all be considered as special cases of coupled DDEs. The coupled DDE formulation is especially effective when a system has a large number of state variables, but only a few of them involve time delays. In this chapter, the stability of such systems is s
43#
發(fā)表于 2025-3-29 01:34:11 | 只看該作者
44#
發(fā)表于 2025-3-29 06:38:08 | 只看該作者
45#
發(fā)表于 2025-3-29 10:08:37 | 只看該作者
Stability Analysis and Control of Linear Periodic Delayed Systems Using Chebyshev and Temporal Finis represented by linear time-periodic delay-differential equations using the Chebyshev and temporal finite element analysis (TFEA) techniques. Here, the analysis and examples assume that there is a single fixed discrete delay, which is equal to the principal period. Two Chebyshev-based methods, Cheb
46#
發(fā)表于 2025-3-29 12:17:33 | 只看該作者
Systems with Periodic Coefficients and Periodically Varying Delays: Semidiscretization-Based Stabildically varying. The stability of periodic solutions of these systems are analyzed by using the semidiscretization method. By employing this method, the periodic coefficients and the delay terms are approximated as constants over a time interval, and the delay differential system is reduced to a set
47#
發(fā)表于 2025-3-29 17:22:51 | 只看該作者
Bifurcations, Center Manifolds, and Periodic Solutions,rential equations (DDEs) usually have parameters in their formulation. How the nature of the solutions change as the parameters vary is crucial to understanding the underlying physical processes. When the DDE is reduced, at an equilibrium point, to leading linear terms and the remaining nonlinear te
48#
發(fā)表于 2025-3-29 20:09:43 | 只看該作者
Center Manifold Analysis of the Delayed Lienard Equation, bifurcation is established based on the reduction of the infinite-dimensional problem onto a twodimensional center manifold. Numerics based on DDE-Biftool are given to compare with the authors’ theoretical calculation. The Liénard type sunflower equation is discussed as an illustrative example base
49#
發(fā)表于 2025-3-30 03:20:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 11:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥东县| 贺兰县| 普兰县| 伊宁市| 濮阳市| 仙桃市| 泉州市| 尉犁县| 陆丰市| 新民市| 昌黎县| 湛江市| 紫云| 望都县| 前郭尔| 阳新县| 城固县| 苍南县| 阳江市| 隆德县| 五原县| 建始县| 龙泉市| 东安县| 杂多县| 苍南县| 绩溪县| 双柏县| 淅川县| 和硕县| 葵青区| 长阳| 宝鸡市| 淳化县| 玉屏| 青海省| 鲁山县| 孝昌县| 巢湖市| 怀远县| 南宫市|