找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

1234
返回列表
打印 上一主題 下一主題

Titlebook: Deformation Spaces; Perspectives on alge Hossein Abbaspour,Matilde Marcolli,Thomas Tradler Book 2010 Vieweg+Teubner Verlag | Springer Fachm

[復(fù)制鏈接]
樓主: 驅(qū)逐
31#
發(fā)表于 2025-3-26 21:58:46 | 只看該作者
32#
發(fā)表于 2025-3-27 03:46:25 | 只看該作者
33#
發(fā)表于 2025-3-27 06:41:31 | 只看該作者
Pure weight perfect Modules on divisorial schemes,ension ., We show that there is a canonical derived Morita equivalence between the DG-category of perfect complexes on . whose cohomological supports are in . and the DG-category of bounded complexes of weight . pseudo-coherent O.-Modules supported on .. This implies that there is a canonical isomor
34#
發(fā)表于 2025-3-27 11:06:39 | 只看該作者
Higher localized analytic indices and strict deformation quantization,(periodic) cyclic cocycle over the convolution algebra . We say that τ can be localized if there is a morphism . satisfying .. (.)=〈.., τ 〉 (Connes pairing). In this case, we call .. the higher localized index associated to τ. In [.] we use the algebra of functions over the tangent groupoid introduc
35#
發(fā)表于 2025-3-27 15:49:51 | 只看該作者
36#
發(fā)表于 2025-3-27 18:11:46 | 只看該作者
Quantizing deformation theory,s Hochschild cocyle can be extended naturally to a star product ?=o.+?o.+?.o. +…. The algebraic structure encoded in * is the properad Ω(.) which, conjecturally, controls a quantization of deformation theory—a theory for which Frobenius algebras replace ordinary commutative parameter rings.
37#
發(fā)表于 2025-3-27 22:20:08 | 只看該作者
-interpretation of a classification of deformations of Poisson structures in dimension three,hree. We indeed reobtain the explicit formulas for all the formal deformations of these Poisson structures, together with a classification in the generic case, by constructing a suitable quasi-isomorphism between two ..-algebras, which are associated to these Poisson structures.
38#
發(fā)表于 2025-3-28 02:39:16 | 只看該作者
39#
發(fā)表于 2025-3-28 07:02:18 | 只看該作者
1234
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 14:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南汇区| 固阳县| 霞浦县| 南丰县| 丘北县| 百色市| 朝阳县| 合肥市| 巫山县| 崇明县| 牡丹江市| 双峰县| 宁陕县| 平度市| 理塘县| 夏河县| 高唐县| 大城县| 星座| 兴山县| 尉犁县| 修文县| 乐平市| 阿拉善盟| 无锡市| 鲁山县| 庐江县| 东明县| 柏乡县| 凤城市| 黄平县| 和田县| 滁州市| 钟祥市| 慈利县| 高邑县| 全椒县| 朝阳区| 东山县| 通榆县| 柳河县|