找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Frontiers of Artific Mohit Sewak Book 2019 Springer Nature Singapore Pte Ltd. 2019 Reinforcement Learning.Deep

[復(fù)制鏈接]
樓主: GLOAT
21#
發(fā)表于 2025-3-25 05:57:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:58:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:29:41 | 只看該作者
A3C in Code,ine the actor-critic model using the Sub-Classing and eager execution functionality of Keras. Both the master and worker agents use this model. The asynchronous workers are implemented as different threads, syncing with the master after every few steps or completion of their respective episodes.
24#
發(fā)表于 2025-3-25 17:02:58 | 只看該作者
,Industriefeuerungen — Abw?rmeverwertung,In this chapter, we would put what we have learnt on Q-Learning in the last chapter in code. We would implement a Q-Table-based Off-Policy Q-Learning agent class, and to complement with a behavior policy, we would implement another class on Behavior Policy with an implementation of the epsilon-greedy algorithm.
25#
發(fā)表于 2025-3-25 20:13:03 | 只看該作者
Deutschunterricht auf dem PrüfstandIn this chapter, we will code the Deep Deterministic Policy Gradient algorithm and apply it for continuous action control tasks as in the Gym’s Mountain Car Continuous environment. We use the Keras-RL high-reinforcement learning wrapper library for a simplified and succinct implementation.
26#
發(fā)表于 2025-3-26 03:53:59 | 只看該作者
Q-Learning in Code,In this chapter, we would put what we have learnt on Q-Learning in the last chapter in code. We would implement a Q-Table-based Off-Policy Q-Learning agent class, and to complement with a behavior policy, we would implement another class on Behavior Policy with an implementation of the epsilon-greedy algorithm.
27#
發(fā)表于 2025-3-26 07:07:22 | 只看該作者
28#
發(fā)表于 2025-3-26 08:36:31 | 只看該作者
29#
發(fā)表于 2025-3-26 13:26:51 | 只看該作者
978-981-13-8287-1Springer Nature Singapore Pte Ltd. 2019
30#
發(fā)表于 2025-3-26 19:29:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衢州市| 工布江达县| 旬邑县| 新蔡县| 区。| 资源县| 隆林| 孟津县| 额敏县| 绥棱县| 蓝山县| 商南县| 镇沅| 桃园县| 永嘉县| 洛隆县| 银川市| 万盛区| 靖宇县| 招远市| 平遥县| 宜兰县| 新兴县| 正阳县| 宣化县| 西和县| 洞口县| 苍山县| 石楼县| 工布江达县| 尼木县| 平邑县| 高邑县| 根河市| 延长县| 禹州市| 噶尔县| 三门峡市| 安新县| 华坪县| 瑞安市|