找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[復(fù)制鏈接]
樓主: 戰(zhàn)神
21#
發(fā)表于 2025-3-25 05:43:52 | 只看該作者
Deutschlands Gro?kraftversorgungoncept of combinatorial games, the second part introduces the family of algorithms known as Monte Carlo Tree Search, and the third part takes Gomoku as the game environment to demonstrate the details of the AlphaZero algorithm, which combines Monte Carlo Tree Search and deep reinforcement learning from self-play.
22#
發(fā)表于 2025-3-25 08:11:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:01:56 | 只看該作者
Preu?en im deutschen F?deralismusn policy optimization and its approximate versions, each one improving its precedent. All the methods introduced in this chapter will be accompanied with its pseudo-code and, at the end of this chapter, a concrete implementation example.
24#
發(fā)表于 2025-3-25 16:18:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:16:23 | 只看該作者
Weimar come argomento e come ammonimentoh directions, as the primers of the advanced topics in the second main part of the book, including Chaps. .–., to provide the readers a relatively comprehensive understanding about the deficiencies of present methods, recent development, and future directions in deep reinforcement learning.
26#
發(fā)表于 2025-3-26 04:01:24 | 只看該作者
Policy Gradientn policy optimization and its approximate versions, each one improving its precedent. All the methods introduced in this chapter will be accompanied with its pseudo-code and, at the end of this chapter, a concrete implementation example.
27#
發(fā)表于 2025-3-26 05:16:52 | 只看該作者
Combine Deep ,-Networks with Actor-Critic chapter, we give a brief introduction of the advantages and disadvantages of each kind of method, then introduce some classical algorithms that combine deep .-networks and actor-critic like the deep deterministic policy gradient algorithm, the twin delayed deep deterministic policy gradient algorithm, and the soft actor-critic algorithm.
28#
發(fā)表于 2025-3-26 10:12:19 | 只看該作者
Challenges of Reinforcement Learningh directions, as the primers of the advanced topics in the second main part of the book, including Chaps. .–., to provide the readers a relatively comprehensive understanding about the deficiencies of present methods, recent development, and future directions in deep reinforcement learning.
29#
發(fā)表于 2025-3-26 16:21:50 | 只看該作者
30#
發(fā)表于 2025-3-26 20:39:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 23:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黑河市| 利辛县| 温州市| 左权县| 台江县| 天镇县| 喀什市| 桃源县| 天峻县| 宁德市| 邯郸市| 全椒县| 富锦市| 廉江市| 文登市| 昭苏县| 晋中市| 丰原市| 延吉市| 三原县| 凤阳县| 榆树市| 永嘉县| 松阳县| 沙洋县| 竹北市| 庄河市| 蚌埠市| 林州市| 高雄县| 吉木萨尔县| 滁州市| 阿拉善左旗| 临江市| 孙吴县| 宽城| 南溪县| 隆化县| 攀枝花市| 竹北市| 石阡县|