找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Neural Networks in a Mathematical Framework; Anthony L. Caterini,Dong Eui Chang Book 2018 The Author(s) 2018 deep learning.machine le

[復(fù)制鏈接]
查看: 55059|回復(fù): 36
樓主
發(fā)表于 2025-3-21 20:09:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Deep Neural Networks in a Mathematical Framework
編輯Anthony L. Caterini,Dong Eui Chang
視頻videohttp://file.papertrans.cn/265/264649/264649.mp4
叢書名稱SpringerBriefs in Computer Science
圖書封面Titlebook: Deep Neural Networks in a Mathematical Framework;  Anthony L. Caterini,Dong Eui Chang Book 2018 The Author(s) 2018 deep learning.machine le
描述.This SpringerBrief describes how to build a rigorous end-to-end mathematical framework?for deep neural networks. The authors provide tools to represent and describe?neural networks, casting previous results in the field in a more natural?light. In particular, the authors derive gradient descent algorithms in a unified way?for several neural network structures, including multilayer perceptrons,?convolutional neural networks, deep autoencoders and recurrent neural?networks. Furthermore, the authors developed framework is both more concise?and mathematically intuitive than previous representations of neural?networks..This SpringerBrief is one step towards unlocking the .black box .of Deep?Learning. The authors believe that this framework will help catalyze further discoveries?regarding the mathematical properties of neural networks.This SpringerBrief is?accessible not only to researchers, professionals and students working and?studying in the field of deep learning, but alsoto those outside of the neutral?network community..
出版日期Book 2018
關(guān)鍵詞deep learning; machine learning; neural networks; multilayer perceptron; convolutional neural networks; r
版次1
doihttps://doi.org/10.1007/978-3-319-75304-1
isbn_softcover978-3-319-75303-4
isbn_ebook978-3-319-75304-1Series ISSN 2191-5768 Series E-ISSN 2191-5776
issn_series 2191-5768
copyrightThe Author(s) 2018
The information of publication is updating

書目名稱Deep Neural Networks in a Mathematical Framework影響因子(影響力)




書目名稱Deep Neural Networks in a Mathematical Framework影響因子(影響力)學(xué)科排名




書目名稱Deep Neural Networks in a Mathematical Framework網(wǎng)絡(luò)公開度




書目名稱Deep Neural Networks in a Mathematical Framework網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Deep Neural Networks in a Mathematical Framework被引頻次




書目名稱Deep Neural Networks in a Mathematical Framework被引頻次學(xué)科排名




書目名稱Deep Neural Networks in a Mathematical Framework年度引用




書目名稱Deep Neural Networks in a Mathematical Framework年度引用學(xué)科排名




書目名稱Deep Neural Networks in a Mathematical Framework讀者反饋




書目名稱Deep Neural Networks in a Mathematical Framework讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:38 | 只看該作者
Deutschland 20 Jahre nach dem Mauerfall require when performing gradient descent steps to optimize the neural network. To represent the dependence of a neural network on its parameters, we then introduce the notion of parameter-dependent maps, including distinct notation for derivatives with respect to parameters as opposed to state vari
板凳
發(fā)表于 2025-3-22 00:45:29 | 只看該作者
Abschied vom Sozialstaat alter Pr?gungmeters, which allow us to perform gradient descent naturally over these vector spaces for each parameter. This approach contrasts with standard approaches to neural network modelling where the parameters are broken down into their components. We can avoid this unnecessary operation using the framewo
地板
發(fā)表于 2025-3-22 05:55:48 | 只看該作者
5#
發(fā)表于 2025-3-22 11:47:28 | 只看該作者
6#
發(fā)表于 2025-3-22 16:09:19 | 只看該作者
7#
發(fā)表于 2025-3-22 18:47:16 | 只看該作者
Generic Representation of Neural Networks,meters, which allow us to perform gradient descent naturally over these vector spaces for each parameter. This approach contrasts with standard approaches to neural network modelling where the parameters are broken down into their components. We can avoid this unnecessary operation using the framewo
8#
發(fā)表于 2025-3-23 01:12:13 | 只看該作者
9#
發(fā)表于 2025-3-23 02:48:32 | 只看該作者
10#
發(fā)表于 2025-3-23 08:41:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 09:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太谷县| 隆昌县| 遂昌县| 鹤庆县| 绥阳县| 平顺县| 长治县| 台北市| 烟台市| 吉林省| 阿拉尔市| 子长县| 西平县| 贞丰县| 祁门县| 沾益县| 新昌县| 周至县| 宝山区| 嵩明县| 泸西县| 灌南县| 利辛县| 罗江县| 孙吴县| 赣州市| 万山特区| 丰镇市| 孟津县| 体育| 通州市| 福州市| 阜南县| 出国| 浦江县| 兴隆县| 辉南县| 句容市| 海淀区| 邯郸县| 东光县|