找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning in Healthcare; Paradigms and Applic Yen-Wei Chen,Lakhmi C. Jain Book 2020 Springer Nature Switzerland AG 2020 Deep Learning.M

[復(fù)制鏈接]
樓主: 與生
41#
發(fā)表于 2025-3-28 15:59:27 | 只看該作者
42#
發(fā)表于 2025-3-28 22:21:55 | 只看該作者
43#
發(fā)表于 2025-3-29 00:01:06 | 只看該作者
Deep Learning in Healthcare978-3-030-32606-7Series ISSN 1868-4394 Series E-ISSN 1868-4408
44#
發(fā)表于 2025-3-29 03:46:47 | 只看該作者
45#
發(fā)表于 2025-3-29 09:52:57 | 只看該作者
46#
發(fā)表于 2025-3-29 11:29:42 | 只看該作者
Destillier- und Rektifiziertechnikmon deep learning architectures for image detection are briefly explained, including scanning-based methods and end-to-end detection systems. Some considerations about the training scheme and loss functions are also included. Then, an overview of relevant publications in anatomical and pathological
47#
發(fā)表于 2025-3-29 17:52:02 | 只看該作者
Erratum to: Theoretische Grundlagen,llenges of medical image segmentation, for which actual approaches to overcome those limitations are discussed. Secondly, supervised and semi-supervised architectures are described, where encoder-decoder type networks are the most widely employed ones. Nonetheless, generative adversarial network-bas
48#
發(fā)表于 2025-3-29 20:27:54 | 只看該作者
Barbara Neuhofer,Lukas Grundnern. In traditional image classification, low-level or mid-level features are extracted to represent the image and a trainable classifier is then used for label assignments. In recent years, the high-level feature representation of deep convolutional neural networks has proven to be superior to hand-c
49#
發(fā)表于 2025-3-30 00:51:13 | 只看該作者
https://doi.org/10.1007/978-3-658-39879-8 methods about convolutional layer, deconvolution layer, loss function and evaluation functions for beginners to easily understand. Then, typical state-of-the-art super-resolution methods using 2D or 3D convolution neural networks will be introduced. From the experimental results of the network intr
50#
發(fā)表于 2025-3-30 06:37:39 | 只看該作者
https://doi.org/10.1007/978-3-658-28110-6gh CNNs have achieved state-of-the-art performances, most researches on semantic segmentation using the deep learning methods are in the field of computer vision, so the research on medical images is much less mature than that of natural images, especially, in the field of 3D image segmentation. Our
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 22:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邯郸县| 常州市| 巫溪县| 横山县| 都昌县| 平乐县| 新化县| 南漳县| 靖安县| 岳普湖县| 承德县| 云南省| 福清市| 巴楚县| 芦溪县| 平遥县| 渑池县| 庆城县| 赤峰市| 泰和县| 夹江县| 同仁县| 汾西县| 苍山县| 潮州市| 宝兴县| 沙洋县| 额济纳旗| 新河县| 金坛市| 古田县| 佛山市| 福泉市| 且末县| 东城区| 洪洞县| 宁都县| 新建县| 屯留县| 扎鲁特旗| 云梦县|