找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Power System Applications; Case Studies Linking Fangxing Li,Yan Du Book 2024 The Editor(s) (if applicable) and The Author

[復制鏈接]
查看: 19043|回復: 36
樓主
發(fā)表于 2025-3-21 17:11:46 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Deep Learning for Power System Applications
副標題Case Studies Linking
編輯Fangxing Li,Yan Du
視頻videohttp://file.papertrans.cn/265/264613/264613.mp4
概述Provides a history of AI in power grid operation and planning.Introduces the CNN, DNN, and DRL algorithms and applications in power systems.Includes several representative case studies
叢書名稱Power Electronics and Power Systems
圖書封面Titlebook: Deep Learning for Power System Applications; Case Studies Linking Fangxing Li,Yan Du Book 2024 The Editor(s) (if applicable) and The Author
描述This book provides readers with an in-depth review of deep learning-based techniques and discusses how they can benefit power system applications. Representative case studies of deep learning techniques in power systems are investigated and discussed, including convolutional neural networks (CNN) for power system security screening and cascading failure assessment, deep neural networks (DNN) for demand response management, and deep reinforcement learning (deep RL) for heating, ventilation, and air conditioning (HVAC) control..Deep Learning for Power System Applications: Case Studies Linking Artificial Intelligence and Power Systems. is an ideal resource for professors, students, and industrial and government researchers in power systems, as well as practicing engineers and AI researchers..Provides a history of AI in power grid operation and planning;.Introduces deep learning algorithms and applications in power systems;.Includes several representative case studies..
出版日期Book 2024
關(guān)鍵詞Deep learning; Deep neural network; Convolutional neural network; Deep reinforcement learning; Deep dete
版次1
doihttps://doi.org/10.1007/978-3-031-45357-1
isbn_softcover978-3-031-45359-5
isbn_ebook978-3-031-45357-1Series ISSN 2196-3185 Series E-ISSN 2196-3193
issn_series 2196-3185
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Deep Learning for Power System Applications影響因子(影響力)




書目名稱Deep Learning for Power System Applications影響因子(影響力)學科排名




書目名稱Deep Learning for Power System Applications網(wǎng)絡公開度




書目名稱Deep Learning for Power System Applications網(wǎng)絡公開度學科排名




書目名稱Deep Learning for Power System Applications被引頻次




書目名稱Deep Learning for Power System Applications被引頻次學科排名




書目名稱Deep Learning for Power System Applications年度引用




書目名稱Deep Learning for Power System Applications年度引用學科排名




書目名稱Deep Learning for Power System Applications讀者反饋




書目名稱Deep Learning for Power System Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:41:35 | 只看該作者
Book 2024 well as practicing engineers and AI researchers..Provides a history of AI in power grid operation and planning;.Introduces deep learning algorithms and applications in power systems;.Includes several representative case studies..
板凳
發(fā)表于 2025-3-22 01:08:20 | 只看該作者
Book 2024resentative case studies of deep learning techniques in power systems are investigated and discussed, including convolutional neural networks (CNN) for power system security screening and cascading failure assessment, deep neural networks (DNN) for demand response management, and deep reinforcement
地板
發(fā)表于 2025-3-22 06:03:41 | 只看該作者
5#
發(fā)表于 2025-3-22 11:55:44 | 只看該作者
Desistance from Sexual Offendingpplying the proposed deep CNN and the DFS algorithm on standard test cases verify their accuracy and that their computational efficiency is thousands of times faster than the model-based traditional approach, which implies the great potential of the proposed algorithm for online applications.
6#
發(fā)表于 2025-3-22 16:23:03 | 只看該作者
Deep Neural Network for Microgrid Management,, which optimizes the decision based on prediction. The simulation results from the proposed data-driven deep learning method, as well as comparisons with conventional model-based methods, substantiate the effectiveness of the proposed approach in solving power system problems with partial or uncertain information.
7#
發(fā)表于 2025-3-22 18:19:26 | 只看該作者
8#
發(fā)表于 2025-3-22 22:22:31 | 只看該作者
9#
發(fā)表于 2025-3-23 02:19:57 | 只看該作者
10#
發(fā)表于 2025-3-23 07:31:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 22:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宣汉县| 陈巴尔虎旗| 分宜县| 绥芬河市| 南陵县| 壶关县| 庆阳市| 西平县| 岳普湖县| 鹤岗市| 休宁县| 贵溪市| 秦安县| 美姑县| 余江县| 垫江县| 新巴尔虎右旗| 仪陇县| 巫山县| 万载县| 孟州市| 大厂| 襄城县| 安多县| 抚宁县| 临澧县| 承德县| 京山县| 南华县| 深泽县| 菏泽市| 广元市| 隆子县| 库车县| 嵊泗县| 华蓥市| 得荣县| 饶平县| 永顺县| 公安县| 广州市|