找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning for Hydrometeorology and Environmental Science; Taesam Lee,Vijay P. Singh,Kyung Hwa Cho Book 2021 The Editor(s) (if applicab

[復制鏈接]
樓主: Extraneous
11#
發(fā)表于 2025-3-23 13:07:07 | 只看該作者
Debas Senshaw,Hossana Twinomurinziy easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
12#
發(fā)表于 2025-3-23 17:34:29 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:14 | 只看該作者
Updating Weights, to improve the speed of convergence and to find the best trajectory to reach the optimum of the employed loss function for a network. In this chapter, those methods for updating weights are explained.
14#
發(fā)表于 2025-3-24 02:09:49 | 只看該作者
Tensorflow and Keras Programming for Deep Learning,y easily getting started with Tensorflow. Keras allows employing Tensorflow without losing its flexibility and capability. In the following, two applications (i.e., temporal and spatial deep learning) are presented to illustrate how to use Keras with python.
15#
發(fā)表于 2025-3-24 03:06:50 | 只看該作者
0921-092X their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo978-3-030-64779-7978-3-030-64777-3Series ISSN 0921-092X Series E-ISSN 1872-4663
16#
發(fā)表于 2025-3-24 06:38:46 | 只看該作者
17#
發(fā)表于 2025-3-24 11:35:18 | 只看該作者
Book 2021ence are very rare.. .This book focuses on the explanation of deep learning techniques and their applications to hydrometeorological and environmental studies with real hydrological and environmental data. This book covers the major deep learning algorithms as Long Short-Term Memory (LSTM) and Convo
18#
發(fā)表于 2025-3-24 18:02:47 | 只看該作者
https://doi.org/10.1007/978-3-319-66387-6esented, including the definition and pros and cons of deep learning, followed by the recent applications of deep learning models in hydrological and environmental fields. The structure of the remaining chapters for this book is also explained.
19#
發(fā)表于 2025-3-24 22:02:10 | 只看該作者
20#
發(fā)表于 2025-3-25 00:50:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
桂林市| 时尚| 教育| 铜山县| 临邑县| 满洲里市| 故城县| 玉田县| 桦川县| 全南县| 托里县| 吉木乃县| 亳州市| 海安县| 休宁县| 亳州市| 阿勒泰市| 阿瓦提县| 武宣县| 揭阳市| 遂昌县| 天门市| 乌拉特前旗| 安乡县| 沭阳县| 高台县| 嘉禾县| 西乡县| 元阳县| 丹凤县| 南宁市| 太湖县| 嘉鱼县| 巴彦淖尔市| 都江堰市| 濮阳市| 晋江市| 新化县| 溧水县| 金沙县| 明水县|