找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Data Labeling for Medical Applications; First International Gustavo Carneiro,Diana Mateus,Julien Cornebise Conference pr

[復(fù)制鏈接]
樓主: interleukins
21#
發(fā)表于 2025-3-25 06:26:53 | 只看該作者
22#
發(fā)表于 2025-3-25 10:46:18 | 只看該作者
23#
發(fā)表于 2025-3-25 11:39:37 | 只看該作者
Conference proceedings 2016ge reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques..
24#
發(fā)表于 2025-3-25 19:30:19 | 只看該作者
0302-9743 medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques..978-3-319-46975-1978-3-319-46976-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
25#
發(fā)表于 2025-3-25 21:15:03 | 只看該作者
HEp-2 Cell Classification Using K-Support Spatial Pooling in Deep CNNserior performance compared with mean pooling strategy in the traditional state-of-the-art coding methods such as sparse coding, linear locality-constrained coding and so on. However, the max pooling strategy in SPP-net only retains the strongest activated pattern, and would completely ignore the fre
26#
發(fā)表于 2025-3-26 03:49:08 | 只看該作者
Fast Predictive Image Registrationetwork, which allows evaluation of deformation field uncertainty through Monte Carlo sampling using dropout at test time. We show that deformation uncertainty highlights areas of ambiguous deformations. We test our method on the OASIS brain image dataset in 2D and 3D.
27#
發(fā)表于 2025-3-26 06:52:05 | 只看該作者
28#
發(fā)表于 2025-3-26 08:42:42 | 只看該作者
De-noising of Contrast-Enhanced MRI Sequences by an Ensemble of Expert Deep Neural Networksep Neural Networks (DNNs) to address the DCE-MRI de-noising challenges. The key idea is based on an ensembling of expert DNNs, where each is trained for different noise characteristics and curve prototypes to solve an inverse problem on a specific subset of the input space. The most likely reconstru
29#
發(fā)表于 2025-3-26 13:40:04 | 只看該作者
Three-Dimensional CT Image Segmentation by Combining 2D Fully Convolutional Network with 3D Majorityt any adjustment. We applied the proposed method to segment a wide range of anatomical structures that consisted of 19 types of targets in the human torso, including all the major organs. A database consisting of 240 3D CT scans and a humanly annotated ground truth was used for training and testing.
30#
發(fā)表于 2025-3-26 18:52:11 | 只看該作者
Medical Image Description Using Multi-task-loss CNNates the need for hand-crafted features, and allows application of the method to new modalities and organs with minimal overhead. The proposed approach generates medical report by estimating standard radiological lexicon descriptors which are a basis for diagnosis. The proposed approach should help
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 17:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
远安县| 安乡县| 墨脱县| 庆云县| 江源县| 平邑县| 卢湾区| 桑日县| 河源市| 宣威市| 林西县| 偃师市| 裕民县| 湘潭市| 军事| 南溪县| 阜新市| 岳普湖县| 酒泉市| 宁津县| 广水市| 基隆市| 峡江县| 乌鲁木齐县| 白山市| 东光县| 茌平县| 浠水县| 札达县| 灵寿县| 永川市| 武夷山市| 新蔡县| 延吉市| 鄂伦春自治旗| 舟山市| 玛多县| 屯昌县| 石河子市| 杭锦旗| 盐山县|