找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Le Lu,Xiaosong Wang,Lin Yang Book 2019 Sprin

[復(fù)制鏈接]
樓主: 生長變吼叫
21#
發(fā)表于 2025-3-25 05:37:58 | 只看該作者
22#
發(fā)表于 2025-3-25 11:03:45 | 只看該作者
23#
發(fā)表于 2025-3-25 12:22:09 | 只看該作者
24#
發(fā)表于 2025-3-25 19:14:26 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:04 | 只看該作者
Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-Fine Framework and Its Adversarial Example last one contain healthy and pathological pancreases, respectively, and achieve the current state of the art in terms of Dice-S?rensen Coefficient (DSC) on all of them. Especially, on the NIH pancreas dataset, we outperform the previous best by an average of over ., and the worst case is improved
26#
發(fā)表于 2025-3-26 02:29:11 | 只看該作者
Glaucoma Detection Based on Deep Learning Network in Fundus Imageided network, local disc region stream, and disc polar transformation stream. The DENet produces the glaucoma detection?result from the image directly without segmentation. Finally, we compare two deep learning?methods with other related methods on several glaucoma detection datasets.
27#
發(fā)表于 2025-3-26 08:18:16 | 只看該作者
28#
發(fā)表于 2025-3-26 10:12:09 | 只看該作者
Anisotropic Hybrid Network for Cross-Dimension Transferable Feature Learning in 3D Medical Imageso 3D anisotropic volumes. Such a transfer inherits the desired strong generalization capability for within-slice information while naturally exploiting between-slice information for more effective modeling. We show the effectiveness of the 3D AH-Net on two example medical image analysis?applications
29#
發(fā)表于 2025-3-26 13:37:07 | 只看該作者
Tumor Growth Prediction Using Convolutional Networksn. We then present a two-stream ConvNets which directly model and learn the two fundamental processes of tumor growth, i.e., cell invasion and mass effect, and predict the subsequent involvement regions of a tumor. Experiments on a longitudinal?pancreatic tumor data set show that both approaches sub
30#
發(fā)表于 2025-3-26 20:08:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹凤县| 清水河县| 北宁市| 宁蒗| 静安区| 淅川县| 沧州市| 曲周县| 舒城县| 饶阳县| 新宾| 原平市| 通化县| 古田县| 凤山市| 银川市| 营口市| 会泽县| 亳州市| 太和县| 溧水县| 叙永县| 平昌县| 云南省| 沾化县| 北碚区| 凌海市| 郎溪县| 纳雍县| 贵州省| 拉孜县| 琼结县| 抚顺县| 洮南市| 铜陵市| 萨嘎县| 扎赉特旗| 定西市| 集贤县| 眉山市| 巴东县|