找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[復(fù)制鏈接]
樓主: 貪求
21#
發(fā)表于 2025-3-25 05:03:03 | 只看該作者
22#
發(fā)表于 2025-3-25 09:07:32 | 只看該作者
Conditional Generation of Medical Images via Disentangled Adversarial Inferencee variables. We conduct extensive qualitative and quantitative assessments on two publicly available medical imaging datasets (LIDC and HAM10000) and test for conditional image generation and style-content disentanglement. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.
23#
發(fā)表于 2025-3-25 13:12:07 | 只看該作者
24#
發(fā)表于 2025-3-25 16:52:57 | 只看該作者
25#
發(fā)表于 2025-3-25 21:32:22 | 只看該作者
One-Shot Learning for Landmarks Detectionthm in order to perform automatic organ localization and landmark matching. We investigated both qualitatively and quantitatively the performance of the proposed approach on clinical temporal bone CT volumes. The results show that our one-shot learning scheme converges well and leads to a good accuracy of the landmark positions.
26#
發(fā)表于 2025-3-26 02:02:35 | 只看該作者
27#
發(fā)表于 2025-3-26 06:03:08 | 只看該作者
Conception of Design Science and its Methods latent space to generate images from a broader domain than what was observed. We show that using our generative approach for ultrasound data augmentation and domain adaptation during training improves the performance of the resulting deep learning models, even when tested within the observed domain.
28#
發(fā)表于 2025-3-26 12:20:38 | 只看該作者
Helena M. Müller,Melanie Reuter-Oppermanndel is trained to generate fake brain connectivity matrices, which are expected to reflect the latent distribution and topological features of the real brain network data. Numerical results show that the BrainNetGAN outperforms the benchmarking algorithms in augmenting the brain networks for AD classification tasks.
29#
發(fā)表于 2025-3-26 14:58:07 | 只看該作者
30#
發(fā)表于 2025-3-26 19:44:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
革吉县| 黄梅县| 青河县| 襄垣县| 沙洋县| 吉隆县| 绥化市| 峡江县| 五华县| 文成县| 甘孜| 增城市| 常熟市| 五大连池市| 镇康县| 江门市| 长宁区| 互助| 文登市| 扎赉特旗| 云南省| 武平县| 怀宁县| 布拖县| 万州区| 禹州市| 宁乡县| 调兵山市| 常山县| 庄浪县| 台南县| 谷城县| 桑植县| 泗水县| 南丹县| 安化县| 峡江县| 清水河县| 遵义市| 上思县| 措美县|