找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

12345
返回列表
打印 上一主題 下一主題

Titlebook: Deep Generative Models; Second MICCAI Worksh Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2022 The Editor(s) (if app

[復(fù)制鏈接]
樓主: GOLF
41#
發(fā)表于 2025-3-28 15:25:47 | 只看該作者
Cross Attention Transformers for?Multi-modal Unsupervised Whole-Body PET Anomaly Detectionthe transformer via cross-attention, i.e. supplying anatomical reference information from paired CT images to aid the PET anomaly detection task. Using 83 whole-body PET/CT samples containing various cancer types, we show that our anomaly detection method is robust and capable of achieving accurate
42#
發(fā)表于 2025-3-28 18:59:02 | 只看該作者
Interpreting Latent Spaces of?Generative Models for?Medical Images Using Unsupervised Methodsize. Furthermore, the directions show that the generative models capture 3D structure despite being presented only with 2D data. The results show that unsupervised methods to discover interpretable directions in GANs generalize to VAEs and can be applied to medical images. This opens a wide array of
43#
發(fā)表于 2025-3-28 23:10:51 | 只看該作者
44#
發(fā)表于 2025-3-29 06:03:09 | 只看該作者
45#
發(fā)表于 2025-3-29 09:28:13 | 只看該作者
Flow-Based Visual Quality Enhancer for?Super-Resolution Magnetic Resonance Spectroscopic Imagings clinical applications. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but the super-resolved images are often blurry compared to the experimentally-acquired high-resolution images. Attempts have been made with the generative ad
46#
發(fā)表于 2025-3-29 11:33:41 | 只看該作者
Cross Attention Transformers for?Multi-modal Unsupervised Whole-Body PET Anomaly Detectione, stage and predict the evolution of cancer. Due to this heterogeneity, a general-purpose cancer detection model can be built using unsupervised learning anomaly detection models; these models learn a healthy representation of tissue and detect cancer by predicting deviations from healthy appearanc
47#
發(fā)表于 2025-3-29 18:02:59 | 只看該作者
48#
發(fā)表于 2025-3-29 21:27:15 | 只看該作者
49#
發(fā)表于 2025-3-30 03:27:20 | 只看該作者
Learning Generative Factors of?EEG Data with?Variational Auto-Encodersna of interest. We address this challenge by applying the framework of variational auto-encoders to 1) classify multiple pathologies and 2) recover the neurological mechanisms of those pathologies in a data-driven manner. Our framework learns generative factors of data related to pathologies. We pro
50#
發(fā)表于 2025-3-30 06:39:03 | 只看該作者
An Image Feature Mapping Model for?Continuous Longitudinal Data Completion and?Generation of?Synthetlete, or have inconsistencies between observations. Thus, we propose a generative model that not only produces continuous trajectories of fully synthetic patient images, but also imputes missing data in existing trajectories, by estimating realistic progression over time. Our generative model is tra
12345
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 15:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
剑河县| 新密市| 长乐市| 孝昌县| 灵台县| 沁源县| 西平县| 滁州市| 定西市| 阳高县| 涟水县| 酒泉市| 清流县| 高邮市| 秀山| 彭州市| 麻城市| 吴堡县| 铁力市| 灵寿县| 汉源县| 库车县| 大理市| 抚远县| 岳阳县| 水富县| 河北省| 重庆市| 临沧市| 久治县| 昆山市| 淮北市| 通江县| 霞浦县| 临沂市| 康定县| 耒阳市| 灵台县| 龙州县| 新宾| 河津市|