找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Databases Theory and Applications; 32nd Australasian Da Miao Qiao,Gottfried Vossen,Lei Li Conference proceedings 2021 Springer Nature Switz

[復(fù)制鏈接]
樓主: 無限
11#
發(fā)表于 2025-3-23 13:27:49 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:21 | 只看該作者
13#
發(fā)表于 2025-3-23 20:34:36 | 只看該作者
14#
發(fā)表于 2025-3-24 01:35:15 | 只看該作者
Experimental Analysis of Locality Sensitive Hashing Techniques for High-Dimensional Approximate Neats in their evaluation. In this experimental survey paper, we show the impact of both these costs on the overall performance. We compare three state-of-the-art techniques on six real-world datasets, and show the importance of comparing these costs to achieve a more fair comparison.
15#
發(fā)表于 2025-3-24 05:12:36 | 只看該作者
Twitter Data Modelling and Provenance Support for Key-Value Pair Databases,a Query-Driven approach. This framework provides efficient provenance capturing support for select, aggregate, update, and historical queries. We evaluate the performance of proposed framework in terms of provenance capturing and querying capabilities using appropriate query sets.
16#
發(fā)表于 2025-3-24 09:53:23 | 只看該作者
17#
發(fā)表于 2025-3-24 13:26:30 | 只看該作者
Adaptive Graph Learning for Semi-supervised Classification of GCNs,n hypergraph, sparse learning and adaptive graph are integrated into a framework. Finally, the suitable graph is obtained, which is inputted into GCN for semi-supervised learning. The experimental results of multi-type datasets show that our method is superior to other comparison algorithms in classification tasks.
18#
發(fā)表于 2025-3-24 14:49:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:39:52 | 只看該作者
Conference proceedings 2021s between researchers and practitioners from around the globe, particularly Australia and New Zealand. ADC shares novel research solutions to problems of todays information society that fullfil the needs of heterogeneous applications and environments and to identify new issues and directions for future research and development work..
20#
發(fā)表于 2025-3-24 23:15:02 | 只看該作者
Contextual Bandit Learning for Activity-Aware Things-of-Interest Recommendation in an Assisted Livied based on a contextual bandit approach to tackle dynamicity in human activity patterns for accurate recommendations meeting user needs without their feedback. Our experiment results demonstrate the feasibility and effectiveness of the proposed Reminder Care System in real-world IoT-based smart home applications.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 13:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莲花县| 龙岩市| 轮台县| 通化县| 云霄县| 漾濞| 邹城市| 南丰县| 霍林郭勒市| 扎赉特旗| 辉南县| 石城县| 怀集县| 阜城县| 沙田区| 新昌县| 寻甸| 浦县| 即墨市| 古交市| 武夷山市| 衡水市| 临邑县| 城口县| 来安县| 梁河县| 仪陇县| 贵南县| 乌鲁木齐县| 县级市| 黄石市| 分宜县| 进贤县| 安国市| 无极县| 安宁市| 桦川县| 稷山县| 财经| 常德市| 五台县|