找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: panache
51#
發(fā)表于 2025-3-30 08:30:07 | 只看該作者
52#
發(fā)表于 2025-3-30 14:08:02 | 只看該作者
Learning Disentangled User Representation Based on Controllable VAE for Recommendationepresentation of users can uncover user intentions behind the observed data (i.e. user-item interaction) and improve the robustness and interpretability of the recommender system. However, existing collaborative filtering methods learning disentangled representation face problems of balancing the tr
53#
發(fā)表于 2025-3-30 18:49:37 | 只看該作者
DFCN: An Effective Feature Interactions Learning Model for Recommender Systemsance of recommendation, which is of great significance. Manual feature engineering is no longer applicable due to its high cost and low efficiency. Factorization machines introduce the second-order feature interactions to enhance learning ability. Deep neural networks (DNNs) have good nonlinear comb
54#
發(fā)表于 2025-3-30 23:18:31 | 只看該作者
55#
發(fā)表于 2025-3-31 02:05:40 | 只看該作者
MISS: A Multi-user Identification Network for Shared-Account Session-Aware Recommendationct the next interaction based on user’s historical sessions and current session. Though existing methods have achieved promising results, they still have drawbacks in some aspects. First, most existing deep learning methods model a session as a sequence, but neglect the complex transition relationsh
56#
發(fā)表于 2025-3-31 06:03:58 | 只看該作者
57#
發(fā)表于 2025-3-31 10:25:39 | 只看該作者
Deep User Representation Construction Model for Collaborative Filteringas modeling the user-item interaction and the only difference between them is that they adopt different ways to build user representations. User-item methods obtain user representations by directly assigning each user a real-valued vector and do not consider users’ historical item information. Howev
58#
發(fā)表于 2025-3-31 14:46:29 | 只看該作者
DiCGAN: A Dilated Convolutional Generative Adversarial Network for Recommender Systems users’ preferences. However, most existing GAN-based recommendation methods only exploit the user-item interactions, while ignoring to leverage the information between user’s interacted items. On the other hand, Convolutional Neural Network (CNN) has shown its power in learning high-order correlati
59#
發(fā)表于 2025-3-31 18:20:42 | 只看該作者
Mau Mau Inventions and Reinventionspapers leverage abundant data from heterogeneous information sources to grasp diverse preferences and improve overall accuracy. Some noticeable papers proposed to extract users’ preference from information along with ratings such as reviews or social relations. However, their combinations are genera
60#
發(fā)表于 2025-4-1 01:16:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台江县| 息烽县| 祥云县| 鸡东县| 定日县| 泗水县| 庆阳市| 牙克石市| 伊宁县| 蓬溪县| 辽阳市| 南投市| 德化县| 寻乌县| 新和县| 阳曲县| 浦北县| 嘉峪关市| 渝北区| 林西县| 东安县| 定安县| 韩城市| 赞皇县| 阳春市| 涞水县| 东兴市| 定南县| 盐城市| 茌平县| 万宁市| 柳州市| 娄底市| 浦城县| 三亚市| 彭州市| 平江县| 岑溪市| 福州市| 天全县| 华蓥市|