找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 26th International C Christian S. Jensen,Ee-Peng Lim,Chih-Ya Shen Conference proceedings 2021 T

[復(fù)制鏈接]
樓主: TEMPO
21#
發(fā)表于 2025-3-25 05:11:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:13 | 只看該作者
Partial Solutions for Patient Safetyletion methods are known to be primarily knowledge embedding based models, which are broadly classified as translational models and neural network models. However, both kinds of models are single-task based models and hence fail to capture the underlying inter-structural relationships that are inher
23#
發(fā)表于 2025-3-25 12:47:33 | 只看該作者
Multi-job Merging Framework and Scheduling Optimization for Apache Flinkighlighted as follows: (1) the framework enables Flink to support multi-job collection, merging and dynamic tuning of the execution sequence, and the selection of these functions are customizable. (2) with the multi-job merging and optimization, the total running time can be reduced by 31% compared
24#
發(fā)表于 2025-3-25 19:07:06 | 只看該作者
25#
發(fā)表于 2025-3-25 19:58:27 | 只看該作者
vRaft: Accelerating the Distributed Consensus Under Virtualized Environments followers to accelerate both the write and the read requests processing in a virtualized cloud environment, without affecting the linearizability guarantee of Raft. The experiments based on the virtual nodes in Tencent Cloud indicate that vRaft improves the throughput by up?to 64.2%, reduces averag
26#
發(fā)表于 2025-3-26 03:45:18 | 只看該作者
27#
發(fā)表于 2025-3-26 07:18:18 | 只看該作者
Label Contrastive Coding Based Graph Neural Network for Graph Classificationc label memory bank and a momentum updated encoder. Our extensive evaluations with eight benchmark graph datasets demonstrate that LCGNN can outperform state-of-the-art graph classification models. Experimental results also verify that LCGNN can achieve competitive performance with less training dat
28#
發(fā)表于 2025-3-26 11:57:36 | 只看該作者
Keyword-Centric Community Search over Large Heterogeneous Information Networks design an advanced algorithm .-core using a new method of traversing the search space based on trees to accelerate the searching procedure. For online queries, we optimize the approach with a new index to handle the online queries of community search over HINs. Extensive experiments on HINs are con
29#
發(fā)表于 2025-3-26 15:01:36 | 只看該作者
KGSynNet: A Novel Entity Synonyms Discovery Framework with Knowledge Graphedge information into their semantic features. We conduct extensive experiments to demonstrate the effectiveness of our . in leveraging the knowledge graph. The experimental results show that the . improves the state-of-the-art methods by 14.7% in terms of hits@3 in the offline evaluation and outper
30#
發(fā)表于 2025-3-26 18:17:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 17:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁安市| 沙洋县| 东方市| 沙坪坝区| 东莞市| 久治县| 教育| 镇江市| 怀柔区| 崇仁县| 都安| 安阳县| 永定县| 葵青区| 佛山市| 海晏县| 九江市| 昭通市| 桐城市| 甘德县| 锡林郭勒盟| 天津市| 武陟县| 冷水江市| 东乡县| 乐至县| 阿拉善盟| 大理市| 江都市| 冕宁县| 元氏县| 嘉禾县| 竹北市| 古田县| 永靖县| 哈尔滨市| 罗甸县| 托克逊县| 邹平县| 浏阳市| 繁峙县|