找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; 28th International C Xin Wang,Maria Luisa Sapino,Hongzhi Yin Conference proceedings 2023 The Ed

[復(fù)制鏈接]
樓主: 使入伍
51#
發(fā)表于 2025-3-30 11:23:54 | 只看該作者
Disentangled Contrastive Learning for?Cross-Domain Recommendationecent research reveals that identifying domain-invariant and domain-specific features behind interactions aids in generating comprehensive user and item representations. However, we argue that existing methods fail to separate domain-invariant and domain-specific representations from each other, whi
52#
發(fā)表于 2025-3-30 15:08:56 | 只看該作者
53#
發(fā)表于 2025-3-30 18:46:10 | 只看該作者
Deep User and?Item Inter-matching Network for?CTR Predictionser interest. There are two main problems with previous works: (1) When most previous works mined interests from users’ historical behaviors, they only focus on implicit or explicit interests. (2) When most previous works mined user interests through the relationship between target users and similar
54#
發(fā)表于 2025-3-30 21:40:40 | 只看該作者
55#
發(fā)表于 2025-3-31 03:29:16 | 只看該作者
56#
發(fā)表于 2025-3-31 05:21:27 | 只看該作者
57#
發(fā)表于 2025-3-31 10:36:22 | 只看該作者
58#
發(fā)表于 2025-3-31 15:46:29 | 只看該作者
Temporal-Aware Multi-behavior Contrastive Recommendation has attracted increasing attention recently. However, most existing multi-behavior recommendations only focus on the behavioral interaction itself, attempting to extract user preferences merely by modeling behaviors, while ignoring the properties of the interaction (e.g., the temporal information).
59#
發(fā)表于 2025-3-31 20:16:11 | 只看該作者
60#
發(fā)表于 2025-3-31 22:39:14 | 只看該作者
Who Is That Man? Lad Trouble in ,, and pplications: high-quality knowledge graphs and modeling user-item relationships. However, existing methods try to solve the above challenges by adopting unified relational rules and simple node aggregation, which cannot cope with complex structured graph data. In this paper, we propose a .nowledge g
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
许昌市| 周宁县| 分宜县| 南江县| 北安市| 桐乡市| 大安市| 邵武市| 苍山县| 岫岩| 湟源县| 吉木乃县| 赞皇县| 岳池县| 湖州市| 阿坝县| 孝感市| 枣强县| 云安县| 乌恰县| 靖西县| 中西区| 靖安县| 青河县| 金溪县| 上栗县| 高邮市| 贵港市| 库伦旗| 河源市| 襄汾县| 潢川县| 西畴县| 南开区| 高青县| 兖州市| 商丘市| 星子县| 崇礼县| 新密市| 淮阳县|