找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[復(fù)制鏈接]
樓主: 日月等
41#
發(fā)表于 2025-3-28 16:08:41 | 只看該作者
Enabling Temporal Reasoning for Fact Statements: A Web-Based Approachrate their risk estimation into the process of probability computation. Our experiments on real data shows that the proposed approach can achieve considerable improvements in performance over 2 state-of-the-art alternatives, and the proposed risk reduction technique can effectively improve validity time reasoning’s precision.
42#
發(fā)表于 2025-3-28 19:03:01 | 只看該作者
43#
發(fā)表于 2025-3-28 23:08:54 | 只看該作者
44#
發(fā)表于 2025-3-29 06:18:53 | 只看該作者
45#
發(fā)表于 2025-3-29 09:34:14 | 只看該作者
https://doi.org/10.1007/978-3-662-55612-2features through multi-type pooling. Experiments show that the CNN with multi-convolution and multi-type pooling (CNN-MCMP) obtains better performance on text classification compared with both the shallow machine-learning models and other CNN architectures.
46#
發(fā)表于 2025-3-29 12:29:36 | 只看該作者
https://doi.org/10.1007/978-3-662-55612-2sed hash strategy to ensure both the partition balancing and less partitioning time. Especially, existing trajectory data are not required to be repartitioned when new data arrive. Extensive experiments on three real data sets demonstrated that the performance of the proposed technique outperformed other partitioning techniques.
47#
發(fā)表于 2025-3-29 19:30:12 | 只看該作者
Constructing Separable Objective Functionsser-based collaborative filtering algorithm (CFC), and validates the validity of the algorithm in the prototype of the proposed system. The experimental results show that the recommendation algorithms can significantly improve accuracy of the recommendation.
48#
發(fā)表于 2025-3-29 20:26:58 | 只看該作者
49#
發(fā)表于 2025-3-30 02:11:46 | 只看該作者
https://doi.org/10.1007/978-1-349-25337-1ted SPARQL engine (e.g. TriAD) in an adaptive way and evaluate FedQL on a real-world dataset. The experimental results show that FedQL is efficient and effective in processing RDF stream and relational data in a federal way.
50#
發(fā)表于 2025-3-30 04:49:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 22:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 临朐县| 民丰县| 漳浦县| 遂川县| 南安市| 密山市| 郁南县| 武平县| 华容县| 玉环县| 江城| 来安县| 内黄县| 长子县| 怀宁县| 新源县| 宁乡县| 道真| 田林县| 正蓝旗| 石家庄市| 庆安县| 辉县市| 团风县| 寿宁县| 永福县| 金川县| 简阳市| 万年县| 托克逊县| 昌江| 苏尼特右旗| 富平县| 玉树县| 垣曲县| 鸡东县| 松桃| 于田县| 巴塘县| 盐池县|