找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Database Systems for Advanced Applications; DASFAA 2018 Internat Chengfei Liu,Lei Zou,Jianxin Li Conference proceedings 2018 Springer Inter

[復(fù)制鏈接]
樓主: 日月等
21#
發(fā)表于 2025-3-25 03:18:59 | 只看該作者
22#
發(fā)表于 2025-3-25 08:36:10 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/d/image/263397.jpg
23#
發(fā)表于 2025-3-25 11:49:50 | 只看該作者
https://doi.org/10.1007/978-3-662-55612-2 for databases. Extensive experiments are designed to conduct both performance testing and analyzing under different schemas. The experimental results show that a reasonable configuration can contribute a good database performance, which provides factual basis for optimizing highly concurrent applic
24#
發(fā)表于 2025-3-25 18:12:21 | 只看該作者
Andranik S. Tangian,Josef GruberIs directly. In this paper, we propose a collaborative inferring framework to analyze the actually visited POI categories from users’ historical trajectory data. Through modeling relationships among the user, time and POI category, the tensor decomposition method can effectively complement the missi
25#
發(fā)表于 2025-3-25 21:30:05 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:53 | 只看該作者
27#
發(fā)表于 2025-3-26 04:19:10 | 只看該作者
28#
發(fā)表于 2025-3-26 09:17:57 | 只看該作者
Tensor Factorization Based POI Category InferenceIs directly. In this paper, we propose a collaborative inferring framework to analyze the actually visited POI categories from users’ historical trajectory data. Through modeling relationships among the user, time and POI category, the tensor decomposition method can effectively complement the missi
29#
發(fā)表于 2025-3-26 15:56:16 | 只看該作者
30#
發(fā)表于 2025-3-26 19:01:08 | 只看該作者
Developing Knowledge-Based Systems Using Data Mining Techniques for Advising Secondary School Studens preprocessed for missing values, outliers, noisy and errors. Then the model is experimented using decision tree (j48) and rule induction (PART) algorithms. In this study as compared to j48, the PART unpruned decision list algorithm has 98.003% predictive performance. Thus, the knowledge discovered
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 15:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西青区| 涪陵区| 元江| 独山县| 永平县| 宁国市| 肥西县| 黔西县| 绥阳县| 阳新县| 腾冲县| 墨江| 始兴县| 高淳县| 芮城县| 庆城县| 上思县| 安新县| 旬邑县| 太和县| 滕州市| 武清区| 江西省| 宜兰县| 岳池县| 深泽县| 神农架林区| 璧山县| 长丰县| 杂多县| 太和县| 汤阴县| 蒙自县| 内丘县| 上犹县| 原阳县| 扶沟县| 青神县| 永昌县| 汽车| 新绛县|