找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data-Enabled Analytics; DEA for Big Data Joe Zhu,Vincent Charles Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive

[復(fù)制鏈接]
樓主: charity
31#
發(fā)表于 2025-3-27 00:49:12 | 只看該作者
978-3-030-75164-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
32#
發(fā)表于 2025-3-27 02:59:57 | 只看該作者
Joe Zhu,Vincent CharlesExplores novel uses of Data Envelopment Analysis and Big Data.Introduces DEA as a data mining tool, under the big data umbrella.Exams DEA models beyond their present scope and mine new insights for be
33#
發(fā)表于 2025-3-27 08:17:05 | 只看該作者
34#
發(fā)表于 2025-3-27 09:42:22 | 只看該作者
35#
發(fā)表于 2025-3-27 16:46:44 | 只看該作者
36#
發(fā)表于 2025-3-27 19:29:39 | 只看該作者
The Estimation of Productive Efficiency Through Machine Learning Techniques: Efficiency Analysis Tr to production theory and engineering. Many parametric and nonparametric approaches have been introduced in the last forty years for estimating production frontiers given a data sample. However, few of these methodologies are based on machine learning techniques, despite being a growing field of res
37#
發(fā)表于 2025-3-27 22:29:59 | 只看該作者
Hybrid Data Science and Reinforcement Learning in Data Envelopment Analysis,e functional form identification of the production frontier and the RL derives the optimal resource reallocation policy which guides the productivity improvement. In fact, both DS and RL techniques complement efficiency analysis. Emphasizes on planning over evaluation, we use data generating process
38#
發(fā)表于 2025-3-28 06:09:32 | 只看該作者
39#
發(fā)表于 2025-3-28 08:27:11 | 只看該作者
Parallel Processing and Large-Scale Datasets in Data Envelopment Analysis,ved once for each DMU. In data enabled analytics, when a large-scale dataset is evaluated, the elapsed time to apply a DEA model substantially increases. Parallel processing allows splitting the task into several parts so each part can simultaneously be executed on different processors. This study e
40#
發(fā)表于 2025-3-28 11:18:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广汉市| 元氏县| 林州市| 明溪县| 堆龙德庆县| 秦皇岛市| 涟水县| 英吉沙县| 马龙县| 濮阳县| 锡林浩特市| 南漳县| 卢湾区| 德钦县| 虹口区| 陵川县| 台江县| 泗阳县| 子长县| 云浮市| 宁河县| 修水县| 和硕县| 满洲里市| 天全县| 正定县| 杭锦后旗| 郑州市| 曲靖市| 娄烦县| 浮山县| 库伦旗| 上犹县| 佛山市| 元朗区| 且末县| 永昌县| 长子县| 淮阳县| 祁阳县| 铜梁县|