找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Stream Management; Processing High-Spee Minos Garofalakis,Johannes Gehrke,Rajeev Rastogi Textbook 2016 Springer-Verlag Berlin Heidelbe

[復制鏈接]
樓主: quick-relievers
21#
發(fā)表于 2025-3-25 05:07:36 | 只看該作者
22#
發(fā)表于 2025-3-25 08:23:25 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:28 | 只看該作者
Clustering Data Streamsocus on clustering in a streaming scenario where a small number of data items are presented at a time and we cannot store all the data points. Thus, our algorithms are restricted to a single pass. The space restriction is typically sublinear, ., where the number of input points is ..
24#
發(fā)表于 2025-3-25 16:06:59 | 只看該作者
25#
發(fā)表于 2025-3-25 21:20:06 | 只看該作者
Ron Elber,Benoit Roux,Roberto Olenderm. This chapter surveys some basic sampling and inference techniques for data streams. We focus on general methods for materializing a sample; later chapters provide specialized sampling methods for specific analytic tasks.
26#
發(fā)表于 2025-3-26 02:36:32 | 只看該作者
https://doi.org/10.1007/978-3-319-60919-5other application is to detecting network anomalies by monitoring network traffic. We describe a variety of approaches that have been proposed to solve these problems. Our goal is to give a flavor of the various techniques that have been used in this area.
27#
發(fā)表于 2025-3-26 07:38:41 | 只看該作者
Multiscale Computational Materials Science data from the data stream to make each decision required by the learning process. The method is applicable to essentially any induction algorithm based on discrete search. In this chapter, we illustrate the use of our method by applying it to what is perhaps the most widely used form of data mining: decision tree induction.
28#
發(fā)表于 2025-3-26 12:00:53 | 只看該作者
29#
發(fā)表于 2025-3-26 16:29:54 | 只看該作者
30#
發(fā)表于 2025-3-26 20:39:17 | 只看該作者
Data-Stream Sampling: Basic Techniques and Resultsm. This chapter surveys some basic sampling and inference techniques for data streams. We focus on general methods for materializing a sample; later chapters provide specialized sampling methods for specific analytic tasks.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绥德县| 治县。| 安阳市| 屏东市| 牡丹江市| 韩城市| 阳春市| 广宗县| 漳平市| 盘山县| 五家渠市| 四川省| 方城县| 彰武县| 尼勒克县| 台中县| 乡城县| 呼和浩特市| 治县。| 礼泉县| 慈溪市| 安多县| 桦川县| 高州市| 乌兰浩特市| 江永县| 科尔| 安国市| 买车| 顺平县| 东安县| 中牟县| 文昌市| 精河县| 苏尼特右旗| 广丰县| 博白县| 色达县| 渝中区| 文安县| 景德镇市|