找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Segmentation and Model Selection for Computer Vision; A Statistical Approa Alireza Bab-Hadiashar,David Suter Book 2000 Springer Scienc

[復(fù)制鏈接]
查看: 32583|回復(fù): 36
樓主
發(fā)表于 2025-3-21 18:15:41 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Data Segmentation and Model Selection for Computer Vision
副標題A Statistical Approa
編輯Alireza Bab-Hadiashar,David Suter
視頻videohttp://file.papertrans.cn/264/263151/263151.mp4
圖書封面Titlebook: Data Segmentation and Model Selection for Computer Vision; A Statistical Approa Alireza Bab-Hadiashar,David Suter Book 2000 Springer Scienc
描述The primary focus of this book is on techniques for segmentation of visual data. By "visual data," we mean data derived from a single image or from a sequence of images. By "segmentation" we mean breaking the visual data into meaningful parts or segments. However, in general, we do not mean "any old data": but data fundamental to the operation of robotic devices such as the range to and motion of objects in a scene. Having said that, much of what is covered in this book is far more general: The above merely describes our driving interests. The central emphasis of this book is that segmentation involves model- fitting. We believe this to be true either implicitly (as a conscious or sub- conscious guiding principle of those who develop various approaches) or explicitly. What makes model-fitting in computer vision especially hard? There are a number of factors involved in answering this question. The amount of data involved is very large. The number of segments and types (models) are not known in advance (and can sometimes rapidly change over time). The sensors we have involve the introduction of noise. Usually, we require fast ("real-time" or near real-time) computation of solutions
出版日期Book 2000
關(guān)鍵詞3D; computer vision; image processing; pattern; pattern recognition
版次1
doihttps://doi.org/10.1007/978-0-387-21528-0
isbn_softcover978-1-4684-9508-9
isbn_ebook978-0-387-21528-0
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

書目名稱Data Segmentation and Model Selection for Computer Vision影響因子(影響力)




書目名稱Data Segmentation and Model Selection for Computer Vision影響因子(影響力)學(xué)科排名




書目名稱Data Segmentation and Model Selection for Computer Vision網(wǎng)絡(luò)公開度




書目名稱Data Segmentation and Model Selection for Computer Vision網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Segmentation and Model Selection for Computer Vision被引頻次




書目名稱Data Segmentation and Model Selection for Computer Vision被引頻次學(xué)科排名




書目名稱Data Segmentation and Model Selection for Computer Vision年度引用




書目名稱Data Segmentation and Model Selection for Computer Vision年度引用學(xué)科排名




書目名稱Data Segmentation and Model Selection for Computer Vision讀者反饋




書目名稱Data Segmentation and Model Selection for Computer Vision讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:58:01 | 只看該作者
g this question. The amount of data involved is very large. The number of segments and types (models) are not known in advance (and can sometimes rapidly change over time). The sensors we have involve the introduction of noise. Usually, we require fast ("real-time" or near real-time) computation of solutions 978-1-4684-9508-9978-0-387-21528-0
板凳
發(fā)表于 2025-3-22 02:38:08 | 只看該作者
地板
發(fā)表于 2025-3-22 07:55:27 | 只看該作者
Advances in Numerical Mathematicsia such as cross-validation, jackknife, bootstrap, ., Bayesian Information Criterion (BIC), and Minimum Description Length (MDL). We conclude by discussing some of the fundamental issues that lie behind all these criteria.
5#
發(fā)表于 2025-3-22 11:43:29 | 只看該作者
6#
發(fā)表于 2025-3-22 14:19:58 | 只看該作者
Data Segmentation and Model Selection for Computer VisionA Statistical Approa
7#
發(fā)表于 2025-3-22 17:49:12 | 只看該作者
8#
發(fā)表于 2025-3-22 21:15:35 | 只看該作者
9#
發(fā)表于 2025-3-23 01:50:43 | 只看該作者
Model Selection Criteria for Geometric Inferenceia such as cross-validation, jackknife, bootstrap, ., Bayesian Information Criterion (BIC), and Minimum Description Length (MDL). We conclude by discussing some of the fundamental issues that lie behind all these criteria.
10#
發(fā)表于 2025-3-23 07:34:27 | 只看該作者
Model Selection for Structure and Motion Recovery from Multiple Imageslculate exactly. Two new methods, GBIC and GRIC for approximating the posterior probability of each putative variety, are presented. This paper is intended as a pragmatic beginner’s guide to model selection, highlighting the pertinent problems and illustrating them using multiview geometry determina
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 15:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
佛山市| 无极县| 达拉特旗| 称多县| 犍为县| 石狮市| 萨迦县| 祁连县| 诸城市| 尉氏县| 肇庆市| 民县| 崇礼县| 云和县| 抚宁县| 蓬安县| 永吉县| 民乐县| 商丘市| 淮北市| 衡水市| 孟津县| 德阳市| 梁山县| 磴口县| 微山县| 济源市| 乌审旗| 墨江| 连州市| 株洲市| 贵港市| 拜泉县| 贺州市| 曲水县| 信阳市| 榆林市| 双鸭山市| 渭南市| 青川县| 山阴县|