找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science Solutions with Python; Fast and Scalable Mo Tshepo Chris Nokeri Book 2022 Tshepo Chris Nokeri 2022 Big Data Analytics.Machine

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:39:19 | 只看該作者
Nonlinear Modeling With Scikit-Learn, PySpark, and H2O,This chapter executes and appraises a nonlinear method for binary classification (called .) using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Spark MLlib, and H2O). To begin, it clarifies the underlying concept behind the sigmoid function.
22#
發(fā)表于 2025-3-25 10:27:41 | 只看該作者
23#
發(fā)表于 2025-3-25 15:30:43 | 只看該作者
Neural Networks with Scikit-Learn, Keras, and H2O,This chapter executes and assesses nonlinear neural networks to address binary classification using a diverse set of comprehensive Python frameworks (i.e., Scikit-Learn, Keras, and H2O).
24#
發(fā)表于 2025-3-25 17:15:58 | 只看該作者
Cluster Analysis with Scikit-Learn, PySpark, and H2O,This chapter explains the . cluster method by implementing a diverse set of Python frameworks (i.e., Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method apportions values to clusters.
25#
發(fā)表于 2025-3-25 21:14:17 | 只看該作者
Principal Component Analysis with Scikit-Learn, PySpark, and H2O,This chapter executes a simple dimension reducer (a principal component method) by implementing a diverse set of Python frameworks (Scikit-Learn, PySpark, and H2O). To begin, it clarifies how the method computes components.
26#
發(fā)表于 2025-3-26 01:44:15 | 只看該作者
27#
發(fā)表于 2025-3-26 04:44:45 | 只看該作者
Leszek J. Chmielewski,Arkadiusz Or?owski(ML) and deep learning (DL) frameworks useful for building scalable applications. After reading this chapter, you will understand how big data is collected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks.
28#
發(fā)表于 2025-3-26 10:33:11 | 只看該作者
29#
發(fā)表于 2025-3-26 13:49:28 | 只看該作者
978-1-4842-7761-4Tshepo Chris Nokeri 2022
30#
發(fā)表于 2025-3-26 17:43:51 | 只看該作者
Big Data, Machine Learning, and Deep Learning Frameworks,(ML) and deep learning (DL) frameworks useful for building scalable applications. After reading this chapter, you will understand how big data is collected, manipulated, and examined using resilient and fault-tolerant technologies. It discusses the Scikit-Learn, Spark MLlib, and XGBoost frameworks.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 03:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舞阳县| 尉犁县| 福安市| 潼关县| 宣汉县| 朝阳区| 股票| 黄平县| 龙门县| 宿松县| 德惠市| 中西区| 建平县| 宣恩县| 庄浪县| 青冈县| 彩票| 东乌珠穆沁旗| 通辽市| 阿坝县| 长丰县| 册亨县| 丰台区| 丽水市| 祥云县| 抚松县| 溆浦县| 斗六市| 鄱阳县| 麻城市| 宿州市| 桓台县| 南川市| 萨嘎县| 河西区| 苏尼特右旗| 伊春市| 哈尔滨市| 贵港市| 喀什市| 桓仁|