找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science; 6th International Co Jing He,Philip S. Yu,Fu Xiao Conference proceedings 2020 Springer Nature Singapore Pte Ltd. 2020 artific

[復(fù)制鏈接]
查看: 6352|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:32:03 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Data Science
副標(biāo)題6th International Co
編輯Jing He,Philip S. Yu,Fu Xiao
視頻videohttp://file.papertrans.cn/264/263055/263055.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Data Science; 6th International Co Jing He,Philip S. Yu,Fu Xiao Conference proceedings 2020 Springer Nature Singapore Pte Ltd. 2020 artific
描述This book constitutes the refereed proceedings of the 6th International Conference on Data Science, ICDS 2019, held in Ningbo, China, during May 2019.. .The 64 revised full papers presented were carefully reviewed and selected from 210 submissions.?.The research papers cover the areas of Advancement of Data Science and Smart City Applications, Theory of Data Science, Data Science of People and Health, Web of Data, Data Science of Trust and Internet of Things..
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; communication systems; computer hardware; computer networks; computer science; c
版次1
doihttps://doi.org/10.1007/978-981-15-2810-1
isbn_softcover978-981-15-2809-5
isbn_ebook978-981-15-2810-1Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Data Science影響因子(影響力)




書目名稱Data Science影響因子(影響力)學(xué)科排名




書目名稱Data Science網(wǎng)絡(luò)公開度




書目名稱Data Science網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Data Science被引頻次




書目名稱Data Science被引頻次學(xué)科排名




書目名稱Data Science年度引用




書目名稱Data Science年度引用學(xué)科排名




書目名稱Data Science讀者反饋




書目名稱Data Science讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:25 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:37:45 | 只看該作者
Dockless Bicycle Sharing Simulation Based on Arenao bicycle to borrow” and “no land to return”. Existing research, in response to the problem of unbalanced site demand, most scholars predict the demand for bicycle sites. In this study, the use of public bicycles at the site is analyzed from the perspective of simulation. The Arena simulation softwa
地板
發(fā)表于 2025-3-22 05:36:34 | 只看該作者
Simplification of 3D City Models Based on K-Means Clustering models is also increasing at the same time, which brings great pressure to data storage and visualization. Therefore, it is necessary to simplify 3D models. In this paper, a three-step simplification method is proposed. Firstly, the geometric features of the building are used to extract the walls a
5#
發(fā)表于 2025-3-22 09:51:59 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:44 | 只看該作者
7#
發(fā)表于 2025-3-22 17:34:21 | 只看該作者
Measurement Methodology for Empirical Study on Pedestrian Flowussed, separately self-organized behaviors, fundamental diagrams and crowd anomaly detection. Various measurements were put forward by researchers which enriched pedestrian walking characteristics, while it still needs to develop effective measurement methodology to understand and interpret individu
8#
發(fā)表于 2025-3-22 23:17:25 | 只看該作者
Discovering Traffic Anomaly Propagation in Urban Space Using Traffic Change Peaks accurate for two reasons. First, they discover the propagation pattern based on the detected anomalies. The imperfection of the detection method itself may introduce false anomalies and miss the real anomaly. Second, they develop a propagation tree of anomalies by searching continuous spatial and t
9#
發(fā)表于 2025-3-23 05:02:18 | 只看該作者
Forecasting on Electricity Consumption of Tourism Industry in Changli Countyrgy consumption, this paper applies a new model, NEWARMA model, which means to add the variable’s own medium- and long-term cyclical fluctuations item to the basic ARMA model, and the prediction accuracy will be significantly improved. This paper also compares fitting result of NEWARMA to neural net
10#
發(fā)表于 2025-3-23 06:45:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 14:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌兰县| 阿勒泰市| 仁布县| 兴业县| 桓台县| 洞口县| 监利县| 武义县| 盈江县| 花垣县| 诸城市| 昂仁县| 屯留县| 芜湖市| 荥阳市| 衡南县| 田阳县| 容城县| 全南县| 赤水市| 新民市| 福鼎市| 巫溪县| 凉城县| 夏津县| 抚州市| 凤台县| 灌南县| 芜湖市| 盘锦市| 嘉荫县| 大渡口区| 凌海市| 靖江市| 乐安县| 昌图县| 嵊州市| 绍兴市| 桑日县| 印江| 邹平县|