找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Science; 9th International Co Zhiwen Yu,Qilong Han,Zeguang Lu Conference proceedings 2023 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: Daidzein
31#
發(fā)表于 2025-3-26 23:01:58 | 只看該作者
32#
發(fā)表于 2025-3-27 01:24:14 | 只看該作者
33#
發(fā)表于 2025-3-27 07:24:31 | 只看該作者
Conference proceedings 2023Engineers and Educators, ICPCSEE 2023 held in Harbin, China, during?September 22–24, 2023..The 52 full papers and 14 short papers presented in these two volumes were carefully reviewed and selected from 244 submissions.?.The papers are organized in the following topical sections:.Part I:? Applicatio
34#
發(fā)表于 2025-3-27 13:18:50 | 只看該作者
35#
發(fā)表于 2025-3-27 15:56:45 | 只看該作者
36#
發(fā)表于 2025-3-27 20:23:26 | 只看該作者
Competition in the UK Grocery Tradesgrey model outperforms the GM(1,1) grey model in relation to the average relative error rate, the single point maximum error, the mean square error of relative error, and the average relative accuracy.
37#
發(fā)表于 2025-3-28 00:34:57 | 只看該作者
Better Fibre Orientation Estimation with Single-Shell Diffusion MRI Using Spherical U-Netpherical convolution network. We reduce the need for high-quality data by utilizing b?=?1000?s/mm. with 60 gradient directions or even less. Our results show that our method outperforms the traditional S-CSD when compared to the M-CSD results as our gold standard.
38#
發(fā)表于 2025-3-28 03:46:40 | 只看該作者
39#
發(fā)表于 2025-3-28 07:00:07 | 只看該作者
Better Fibre Orientation Estimation with Single-Shell Diffusion MRI Using Spherical U-Nethell Multi-Tissue Constrained Spherical Deconvolution (M-CSD) method, which is a significant technique for reconstructing the fibre orientation distribution function (fODF), requires multishell data with a considerable number of gradient directions to achieve high accuracy. As multishell data are no
40#
發(fā)表于 2025-3-28 12:46:42 | 只看該作者
A Method for Extracting Electronic Medical Record Entities by Fusing Multichannel Self-Attention Mecmedical record content data is an effective means to obtain medical knowledge and analyse patients’ states, but the existing methods for extracting entities from electronic medical records have problems of redundant information, overlapping entities, and low accuracy rates. Therefore, this paper pro
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
延川县| 德保县| 洛南县| 广东省| 洞口县| 吴川市| 色达县| 张家川| 巴彦淖尔市| 镇坪县| 乌拉特后旗| 壶关县| 大宁县| 仲巴县| 林州市| 缙云县| 崇仁县| 西乌珠穆沁旗| 兴山县| 科尔| 肃宁县| 佛冈县| 固安县| 平阳县| 巍山| 龙井市| 长治市| 云浮市| 聂拉木县| 雅江县| 阜平县| 广水市| 黑山县| 禹州市| 伊通| 石阡县| 香港| 陇南市| 高唐县| 永春县| 新宁县|