找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Profiling; Ziawasch Abedjan,Lukasz Golab,Thorsten Papenbrock Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
查看: 55153|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:25:52 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Data Profiling
編輯Ziawasch Abedjan,Lukasz Golab,Thorsten Papenbrock
視頻videohttp://file.papertrans.cn/264/263017/263017.mp4
叢書(shū)名稱Synthesis Lectures on Data Management
圖書(shū)封面Titlebook: Data Profiling;  Ziawasch Abedjan,Lukasz Golab,Thorsten Papenbrock Book 2019 Springer Nature Switzerland AG 2019
描述.Data profiling refers to the activity of collecting data about data, {i.e.}, metadata. Most IT professionals and researchers who work with data have engaged in data profiling, at least informally, to understand and explore an unfamiliar dataset or to determine whether a new dataset is appropriate for a particular task at hand. Data profiling results are also important in a variety of other situations, including query optimization, data integration, and data cleaning. Simple metadata are statistics, such as the number of rows and columns, schema and datatype information, the number of distinct values, statistical value distributions, and the number of null or empty values in each column. More complex types of metadata are statements about multiple columns and their correlation, such as candidate keys, functional dependencies, and other types of dependencies...This book provides a classification of the various types of profilable metadata, discusses popular data profiling tasks,and surveys state-of-the-art profiling algorithms. While most of the book focuses on tasks and algorithms for relational data profiling, we also briefly discuss systems and techniques for profiling non-relati
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-01865-7
isbn_softcover978-3-031-00737-8
isbn_ebook978-3-031-01865-7Series ISSN 2153-5418 Series E-ISSN 2153-5426
issn_series 2153-5418
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書(shū)目名稱Data Profiling影響因子(影響力)




書(shū)目名稱Data Profiling影響因子(影響力)學(xué)科排名




書(shū)目名稱Data Profiling網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Data Profiling網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Data Profiling被引頻次




書(shū)目名稱Data Profiling被引頻次學(xué)科排名




書(shū)目名稱Data Profiling年度引用




書(shū)目名稱Data Profiling年度引用學(xué)科排名




書(shū)目名稱Data Profiling讀者反饋




書(shū)目名稱Data Profiling讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:09:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:52:08 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:16 | 只看該作者
Discovering Metadata, science and data analytics, and with the realization that business insight may be extracted from data, has brought many datasets into organizations’ data lakes and data reservoirs. Data profiling helps understand and prepare data for subsequent cleansing, integration, and analysis.
5#
發(fā)表于 2025-3-22 12:08:54 | 只看該作者
Data Profiling Tasks, individual columns, those which identify dependencies across columns, and those which examine non-relational data such as trees, graphs or text. The classes are explained in the following subsections, where we also discuss the relationship between data profiling and data mining.
6#
發(fā)表于 2025-3-22 13:15:48 | 只看該作者
Regulation? — or Discrimination?, semi-structured data such as XML and RDF and non-structured data such as text. In this chapter, we describe two types of solutions: those which apply traditional data profiling algorithms to new types of data and those which develop new approaches to profiling non-relational data.
7#
發(fā)表于 2025-3-22 18:25:38 | 只看該作者
8#
發(fā)表于 2025-3-22 22:41:13 | 只看該作者
9#
發(fā)表于 2025-3-23 05:04:51 | 只看該作者
10#
發(fā)表于 2025-3-23 08:42:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
康马县| 泸州市| 郧西县| 延安市| 西乌珠穆沁旗| 克什克腾旗| 大兴区| 巩留县| 东城区| 大埔县| 永修县| 绥中县| 古蔺县| 长子县| 铁岭市| 龙门县| 尚义县| 三门县| 达孜县| 肥乡县| 贵港市| 巴马| 邯郸市| 抚顺市| 白水县| 大同市| 嘉兴市| 罗定市| 特克斯县| 罗山县| 资兴市| 永寿县| 洛隆县| 辽源市| 固镇县| 阳东县| 景洪市| 连州市| 卢氏县| 大埔县| 淳安县|