找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Data Assimilation Fundamentals; A Unified Formulatio Geir Evensen,Femke C. Vossepoel,Peter Jan van Leeu Textbook‘‘‘‘‘‘‘‘ 2022 The Editor(s)

[復制鏈接]
樓主: JAZZ
31#
發(fā)表于 2025-3-26 21:52:49 | 只看該作者
Strong-Constraint 4DVarThis chapter introduces the . (SC-4DVar) method. By strong constraint, we refer to the dynamical model having no model errors. Hence, the model solution over the assimilation window is entirely determined by the model as soon as we give the initial conditions.
32#
發(fā)表于 2025-3-27 02:21:52 | 只看該作者
Randomized-Maximum-Likelihood SamplingIn the following, we derive some methods for sampling the posterior conditional pdf in Eq.?(.). We aim to estimate the full pdf, not only finding its maximum. We will, in this chapter, use an approach named randomized maximum likelihood (RML) sampling.
33#
發(fā)表于 2025-3-27 07:09:58 | 只看該作者
34#
發(fā)表于 2025-3-27 11:33:54 | 只看該作者
Fully Nonlinear Data AssimilationThis chapter provides an introduction to methods that, in theory, samples precisely the posterior pdf. Commonly-used ensemble data-assimilation methods, like the EnKF and EnRML, only sample the posterior pdf correctly in the Gauss-linear case and typically fail in cases with strong nonlinearity.
35#
發(fā)表于 2025-3-27 17:06:22 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:08 | 只看該作者
EnKF for an Advection EquationThis chapter discusses a straightforward application of the EnKF with a linear advection equation. The example illustrates the smooth spatial update that the EnKF provides and how information propagates with the flow. Furthermore, we will see how the EnKF provides consistent error statistics.
37#
發(fā)表于 2025-3-27 22:16:20 | 只看該作者
EnKF with the Lorenz EquationsThe chaotic Lorenz’63 model is a much-used testbed used to examine the capabilities of data-assimilation methods to handle nonlinear, unstable, and chaotic dynamics. This chapter will repeat some experiments that demonstrate the strengths of ensemble methods for highly nonlinear dynamics.
38#
發(fā)表于 2025-3-28 02:05:27 | 只看該作者
Representer Method with an Ekman-Flow ModelEknes and Evensen (1997) solved the weak-constraint variational problem for a linear Ekman-flow model using the representer method. They computed the weak constraint solution for a long time series of velocity measurements. Additionally, they considered a parameter-estimation problem which rendered the problem nonlinear.
39#
發(fā)表于 2025-3-28 06:49:21 | 只看該作者
40#
發(fā)表于 2025-3-28 12:20:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 07:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
和平县| 平和县| 连山| 定襄县| 娱乐| 通山县| 汝州市| 五大连池市| 高州市| 娄底市| 黄浦区| 乐至县| 睢宁县| 射阳县| 盖州市| 横山县| 仙桃市| 北票市| 松桃| 临湘市| 乌兰浩特市| 马龙县| 上林县| 杭锦旗| 独山县| 大关县| 大同县| 康马县| 温州市| 洛扎县| 绥芬河市| 台中县| 随州市| 开江县| 柯坪县| 内乡县| 新龙县| 孟村| 北安市| 大姚县| 永和县|