找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cyclotomic Fields I and II; Serge Lang Textbook 1990Latest edition Springer Science+Business Media New York 1990 Cohomology.Prime.algebra.

[復制鏈接]
樓主: cerebral
21#
發(fā)表于 2025-3-25 05:27:18 | 只看該作者
Lubin-Tate Theory,ith prime elements in a .-adic field, they construct maximal abelian totally ramified extensions by means of torsion points on formal groups, thus obtaining a merging of class field theory and Kummer theory by means of these groups.
22#
發(fā)表于 2025-3-25 09:02:13 | 只看該作者
Explicit Reciprocity Laws,otomic fields. These were extended by Coates—Wiles [CW 1] and Wiles [Wi] to arbitrary Lubin—Tate groups. Although Wiles follows Iwasawa to a large extent, it turns out his proofs are simpler because of the formalism of the Lubin—Tate formal groups. We essentially reproduce his paper in the present chapter.
23#
發(fā)表于 2025-3-25 13:29:15 | 只看該作者
24#
發(fā)表于 2025-3-25 16:56:30 | 只看該作者
-adic Preliminaries, Artin-Hasse power series, and the Dwork power series closely related to it. The latter allows us to obtain an analytic representation of .-th roots of unity, which reappear later in the context of gauss sums, occurring as eigenvalues of .-adic completely continuous operators. Cf. Dwork’s papers in the bibliography.
25#
發(fā)表于 2025-3-25 21:45:55 | 只看該作者
26#
發(fā)表于 2025-3-26 00:35:03 | 只看該作者
27#
發(fā)表于 2025-3-26 04:22:10 | 只看該作者
Acoustic Communication Under the Sea), of higher .-groups (Coates—Sinnott [Co 1], [Co 2], [C—S]) has led to purely algebraic theorems concerned with group rings and certain ideals, formed with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals happen to annihilate these groups, but in many cases it is still conjectu
28#
發(fā)表于 2025-3-26 11:05:08 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:36 | 只看該作者
30#
發(fā)表于 2025-3-26 20:31:53 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 06:02
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尤溪县| 黄梅县| 昌乐县| 横山县| 泌阳县| 溆浦县| 红原县| 中卫市| 教育| 临沧市| 晴隆县| 武邑县| 福泉市| 镇江市| 邓州市| 浪卡子县| 吉林省| 新乡市| 万源市| 昌平区| 中阳县| 将乐县| 延吉市| 沧源| 岢岚县| 政和县| 济阳县| 宜州市| 白河县| 宣汉县| 晋江市| 定兴县| 塘沽区| 九龙城区| 满城县| 荥经县| 高淳县| 新乐市| 双桥区| 登封市| 遂川县|