找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics, Graph Theory and Computing; SEICCGTC 2021, Boca Frederick Hoffman,Sarah Holliday,John Wierman Conference proceedings 2024 T

[復制鏈接]
樓主: Autonomous
51#
發(fā)表于 2025-3-30 09:07:00 | 只看該作者
Decomposition of the Johnson Graphs into Graph-Pairs of Order 4, the .-element subsets of a .-element set, and two vertices are adjacent if the intersection of the corresponding subsets contains . elements. We show necessary and sufficient conditions for .(.,?2) to admit a decomposition into graph-pairs of order 4.
52#
發(fā)表于 2025-3-30 13:53:40 | 只看該作者
,Multicore Graphs: Characterization and?Properties,pp. 517:30–52 (2017)) [.]. We prove that the multicore graphs are the .-free chordal graphs and we present a characterization of the class which provides a simple linear time recognition algorithm. We also show its interrelation with other subclasses of chordal graphs: the clique-corona graphs and the starlike graphs.
53#
發(fā)表于 2025-3-30 17:13:46 | 只看該作者
(2, 3)-Cordial Oriented Hypercubes, a (2,?3)-cordial oriented hypercube for any dimension divisible by 3. Next, we provide examples of (2,?3)-cordial oriented hypercubes of dimension not divisible by 3 and state a conjecture on existence for dimension .. We close by presenting the only 3D oriented hypercubes up?to isomorphism that are not (2,?3)-cordial.
54#
發(fā)表于 2025-3-30 21:11:07 | 只看該作者
,On the?Locating Rainbow Connection Number of?the?Comb Product with?Complete Graphs or?Trees, and define the locating rainbow connection number within this framework. Our main results establish tight upper and lower bounds for . in the context of comb products. Additionally, we determine the locating rainbow connection number for the comb product of an arbitrary graph with a complete graph or a tree.
55#
發(fā)表于 2025-3-31 01:00:38 | 只看該作者
,Cycle-Compelling Colorings of?Graphs,tains a cycle. The cycle-compelling number is defined to be the minimum . such that some .-coloring is cycle-compelling. We provide some general bounds and algorithmic results on this and related parameters. We also investigate the value in specific graph families including cubic graphs, disjoint union of cliques, and outerplanar graphs.
56#
發(fā)表于 2025-3-31 08:38:26 | 只看該作者
57#
發(fā)表于 2025-3-31 10:01:42 | 只看該作者
58#
發(fā)表于 2025-3-31 16:04:18 | 只看該作者
59#
發(fā)表于 2025-3-31 19:37:01 | 只看該作者
60#
發(fā)表于 2025-3-31 23:52:00 | 只看該作者
Jan Dijksterhuis,Robert A. Samson a (2,?3)-cordial oriented hypercube for any dimension divisible by 3. Next, we provide examples of (2,?3)-cordial oriented hypercubes of dimension not divisible by 3 and state a conjecture on existence for dimension .. We close by presenting the only 3D oriented hypercubes up?to isomorphism that are not (2,?3)-cordial.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
陆丰市| 宁蒗| 宜城市| 大港区| 溧阳市| 惠安县| 乌鲁木齐市| 方城县| 内丘县| 丽江市| 五莲县| 南宫市| 邳州市| 商城县| 黔江区| 中宁县| 万全县| 平阴县| 珠海市| 盈江县| 新和县| 区。| 开原市| 彭泽县| 开远市| 岗巴县| 堆龙德庆县| 阜宁县| 徐州市| 彩票| 石楼县| 保亭| 手游| 奇台县| 绥德县| 黄龙县| 思南县| 黔江区| 大安市| 双江| 黄大仙区|