找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cybernetics Approaches in Intelligent Systems; Computational Method Radek Silhavy,Petr Silhavy,Zdenka Prokopova Conference proceedings 2018

[復(fù)制鏈接]
樓主: 開脫
21#
發(fā)表于 2025-3-25 04:25:02 | 只看該作者
22#
發(fā)表于 2025-3-25 10:11:44 | 只看該作者
Moulay Driss Mechaoui,Abdessamad Imineion..In this work we provide low rank estimations for sequences generated by different designs based on digit sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring ., ., ., with numbers . such that ., ., and on digit sequences of coordinate sequences of matrix/skew MP LRS over such Galois rings.
23#
發(fā)表于 2025-3-25 13:36:31 | 只看該作者
24#
發(fā)表于 2025-3-25 19:38:19 | 只看該作者
25#
發(fā)表于 2025-3-25 21:03:16 | 只看該作者
Controllability of Evolution Differential Inclusion with Nonlocal Condition in Banach Space,In this paper, we consider the controllability of a class of evolution inclusion in Banach space. A sufficient condition is established by using the fixed-point theorem for multi-valued.
26#
發(fā)表于 2025-3-26 01:18:04 | 只看該作者
Lower Bounds on Linear Complexity of Digital Sequences Products of LRS and Matrix LRS over Galois Rion..In this work we provide low rank estimations for sequences generated by different designs based on digit sequences of linear recurrent sequences (LRS) of maximal period (MP) over Galois ring ., ., ., with numbers . such that ., ., and on digit sequences of coordinate sequences of matrix/skew MP LRS over such Galois rings.
27#
發(fā)表于 2025-3-26 04:41:39 | 只看該作者
28#
發(fā)表于 2025-3-26 11:18:19 | 只看該作者
29#
發(fā)表于 2025-3-26 14:57:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:01:54 | 只看該作者
Mitochondria in Neurodegenerationticularly the example of the additive uncertainty model creation on the basis of a third order integrating plant with parametric uncertainty by means of the selection of a nominal system and a suitable weight function. Moreover, it compares the results of robust stability border investigation for pa
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 15:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢氏县| 迁安市| 吉隆县| 卢氏县| 崇信县| 礼泉县| 台东市| 楚雄市| 远安县| 健康| 息烽县| 建德市| 图们市| 乌兰浩特市| 桃园市| 晋宁县| 新民市| 沾化县| 威宁| 牡丹江市| 卢龙县| 林西县| 永春县| 江北区| 凯里市| 巨鹿县| 龙海市| 堆龙德庆县| 民权县| 广河县| 新郑市| 南安市| 盘锦市| 东乌珠穆沁旗| 册亨县| 东方市| 清新县| 同仁县| 湟源县| 韩城市| 玛多县|