找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Curves and Surfaces for Computer Graphics; David Salomon Textbook 2006 Springer-Verlag New York 2006 Animation.Interpolation.Mathematica.a

[復(fù)制鏈接]
樓主: Enkephalin
11#
發(fā)表于 2025-3-23 13:15:43 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6wever, as the discussion in Section 1.5 (especially exercise 1.20) illustrates, a curve based on a high-degree poly- nomial may wiggle wildly and its shape may be far from what the user has in mind. In practical work we are normally interested in a smooth, tight curve that proceeds from point to poi
12#
發(fā)表于 2025-3-23 17:43:03 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6 notably R. Riesenfeld. They have been studied extensively, have been considerably extended since the 1970s, and much is currently known about them. The designation ?B“ stands for Basis, so the full name of this approach to curve and surface design is the basis spline. This chapter discusses the imp
13#
發(fā)表于 2025-3-23 21:43:21 | 只看該作者
https://doi.org/10.1007/978-981-99-1685-6es that lead to the same result. A third approach to curve and surface design, employing the process of . (also known as . or .), is the topic of this chapter. Refinement is a general approach that can produce Bézier curves, B-spline curves, and other types of curves. Its main advantage is that it c
14#
發(fā)表于 2025-3-23 23:11:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:39:25 | 只看該作者
https://doi.org/10.1007/0-387-28452-4Animation; Interpolation; Mathematica; architecture; computer; computer graphics; computer science
16#
發(fā)表于 2025-3-24 08:12:54 | 只看該作者
978-1-4419-2023-2Springer-Verlag New York 2006
17#
發(fā)表于 2025-3-24 13:33:28 | 只看該作者
Subdivision Methods,es that lead to the same result. A third approach to curve and surface design, employing the process of . (also known as . or .), is the topic of this chapter. Refinement is a general approach that can produce Bézier curves, B-spline curves, and other types of curves. Its main advantage is that it can easily be extended to surfaces.
18#
發(fā)表于 2025-3-24 15:17:26 | 只看該作者
19#
發(fā)表于 2025-3-24 20:07:03 | 只看該作者
20#
發(fā)表于 2025-3-25 02:26:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明溪县| 湖南省| 沁水县| 平舆县| 会昌县| 紫金县| 驻马店市| 赣榆县| 大余县| 安宁市| 兴安盟| 新乐市| 三穗县| 连城县| 涞水县| 布拖县| 乌审旗| 祁门县| 房产| 修文县| 华容县| 手游| 巴塘县| 新兴县| 云浮市| 山东省| 丰都县| 新河县| 福建省| 英超| 扎鲁特旗| 古田县| 连城县| 大冶市| 凤山县| 三亚市| 中宁县| 梅州市| 普兰县| 呼和浩特市| 金昌市|