找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Current Trends in Number Theory; Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr Book 2002 Hindustan Book Agency (India) 2002

[復(fù)制鏈接]
樓主: Nixon
41#
發(fā)表于 2025-3-28 15:09:05 | 只看該作者
On Automorphism Groups of Algebraic Curves, we give classical results on the upper bounds of the order of Aut(.). In §2, we discuss the relation between Aut(.) and .-ranks of ., when the ground field . has characteristic . > 0. Finally in §3, we give an upper bound of the orders of abelian subgroups of Aut(.).
42#
發(fā)表于 2025-3-28 22:03:47 | 只看該作者
Zeta Functions for Curves Defined over Finite Fields,lds. We state these conjectures, and also the more recent Weil theorem for singular curves defined over finite fields. We end by remarking on some explicit results we have obtained for the zeta functions of some concrete classes of curves (both non-singular and singular) defined over a certain class of finite fields.
43#
發(fā)表于 2025-3-29 00:54:15 | 只看該作者
An Equation of Goormaghtigh and Diophantine Approximations,mations by applying them to (1). All the constants appearing in this article are effectively computable. This means that they can be determined explicitly in terms of various parameters involved. By .(.), we understand that . is a number depending only on ..
44#
發(fā)表于 2025-3-29 06:29:25 | 只看該作者
The Cyclotomic Problem,acobi sums play an important role in this theory. The present paper is a survey of the work of a number of mathematicians on this problem and indicates the current status of the problem. Recently, Paul van Wamelen has obtained a solution to the problem for any modulus.
45#
發(fā)表于 2025-3-29 10:46:13 | 只看該作者
46#
發(fā)表于 2025-3-29 12:48:17 | 只看該作者
47#
發(fā)表于 2025-3-29 17:45:36 | 只看該作者
Springer Fachmedien Wiesbaden GmbHmations by applying them to (1). All the constants appearing in this article are effectively computable. This means that they can be determined explicitly in terms of various parameters involved. By .(.), we understand that . is a number depending only on ..
48#
發(fā)表于 2025-3-29 21:02:11 | 只看該作者
49#
發(fā)表于 2025-3-30 01:32:01 | 只看該作者
50#
發(fā)表于 2025-3-30 05:58:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 01:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 罗甸县| 醴陵市| 漳平市| 临漳县| 蕲春县| 耒阳市| 广灵县| 石阡县| 阳曲县| 呼图壁县| 邵武市| 伽师县| 五莲县| 吴旗县| 本溪市| 临澧县| 策勒县| 吴江市| 黄梅县| 应城市| 德江县| 红桥区| 奉化市| 石首市| 光山县| 柘城县| 民县| 肥东县| 新龙县| 内乡县| 新乡市| 贺州市| 万宁市| 瑞金市| 浙江省| 阿巴嘎旗| 余姚市| 琼结县| 苍梧县| 郓城县|